zephyr/drivers/clock_control/clock_control_esp32.c

812 lines
26 KiB
C

/*
* Copyright (c) 2020 Mohamed ElShahawi.
* Copyright (c) 2021-2024 Espressif Systems (Shanghai) Co., Ltd.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT espressif_esp32_rtc
#define CPU_RESET_REASON RTC_SW_CPU_RESET
#if defined(CONFIG_SOC_SERIES_ESP32)
#define DT_CPU_COMPAT espressif_xtensa_lx6
#undef CPU_RESET_REASON
#define CPU_RESET_REASON SW_CPU_RESET
#include <zephyr/dt-bindings/clock/esp32_clock.h>
#include <esp32/rom/rtc.h>
#include <soc/dport_reg.h>
#include <soc/i2s_reg.h>
#elif defined(CONFIG_SOC_SERIES_ESP32S2)
#define DT_CPU_COMPAT espressif_xtensa_lx7
#include <zephyr/dt-bindings/clock/esp32s2_clock.h>
#include <esp32s2/rom/rtc.h>
#include <soc/dport_reg.h>
#include <soc/i2s_reg.h>
#elif defined(CONFIG_SOC_SERIES_ESP32S3)
#define DT_CPU_COMPAT espressif_xtensa_lx7
#include <zephyr/dt-bindings/clock/esp32s3_clock.h>
#include <esp32s3/rom/rtc.h>
#include <soc/dport_reg.h>
#elif defined(CONFIG_SOC_SERIES_ESP32C2)
#define DT_CPU_COMPAT espressif_riscv
#include <zephyr/dt-bindings/clock/esp32c2_clock.h>
#include <esp32c2/rom/rtc.h>
#elif defined(CONFIG_SOC_SERIES_ESP32C3)
#define DT_CPU_COMPAT espressif_riscv
#include <zephyr/dt-bindings/clock/esp32c3_clock.h>
#include <esp32c3/rom/rtc.h>
#elif defined(CONFIG_SOC_SERIES_ESP32C6)
#define DT_CPU_COMPAT espressif_riscv
#include <zephyr/dt-bindings/clock/esp32c6_clock.h>
#include <soc/lp_clkrst_reg.h>
#include <soc/regi2c_dig_reg.h>
#include <regi2c_ctrl.h>
#include <esp32c6/rom/rtc.h>
#include <soc/dport_access.h>
#include <hal/clk_tree_ll.h>
#include <hal/usb_serial_jtag_ll.h>
#include <esp_private/esp_pmu.h>
#include <ocode_init.h>
#endif
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/esp32_clock_control.h>
#include <esp_rom_caps.h>
#include <esp_rom_sys.h>
#include <esp_rom_uart.h>
#include <soc/periph_defs.h>
#include <soc/rtc.h>
#include <hal/clk_gate_ll.h>
#include <esp_private/periph_ctrl.h>
#include <esp_private/esp_clk.h>
#include <esp_cpu.h>
#include <hal/regi2c_ctrl_ll.h>
#include <hal/clk_tree_hal.h>
#include <esp_private/esp_clk_tree_common.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(clock_control, CONFIG_CLOCK_CONTROL_LOG_LEVEL);
static bool reset_reason_is_cpu_reset(void)
{
soc_reset_reason_t rst_reason = esp_rom_get_reset_reason(0);
if ((rst_reason == RESET_REASON_CPU0_MWDT0 || rst_reason == RESET_REASON_CPU0_SW ||
rst_reason == RESET_REASON_CPU0_RTC_WDT
#if !defined(CONFIG_SOC_SERIES_ESP32) && !defined(CONFIG_SOC_SERIES_ESP32C2)
|| rst_reason == RESET_REASON_CPU0_MWDT1
#endif
)) {
return true;
}
return false;
}
#if defined(CONFIG_SOC_SERIES_ESP32C6)
static void esp32_clock_perip_init(void)
{
soc_reset_reason_t rst_reason = esp_rom_get_reset_reason(0);
if ((rst_reason != RESET_REASON_CPU0_MWDT0) && (rst_reason != RESET_REASON_CPU0_MWDT1) &&
(rst_reason != RESET_REASON_CPU0_SW) && (rst_reason != RESET_REASON_CPU0_RTC_WDT)) {
periph_ll_disable_clk_set_rst(PERIPH_UART1_MODULE);
periph_ll_disable_clk_set_rst(PERIPH_I2C0_MODULE);
periph_ll_disable_clk_set_rst(PERIPH_RMT_MODULE);
periph_ll_disable_clk_set_rst(PERIPH_LEDC_MODULE);
periph_ll_disable_clk_set_rst(PERIPH_TIMG1_MODULE);
periph_ll_disable_clk_set_rst(PERIPH_TWAI0_MODULE);
periph_ll_disable_clk_set_rst(PERIPH_TWAI1_MODULE);
periph_ll_disable_clk_set_rst(PERIPH_I2S1_MODULE);
periph_ll_disable_clk_set_rst(PERIPH_PCNT_MODULE);
periph_ll_disable_clk_set_rst(PERIPH_ETM_MODULE);
periph_ll_disable_clk_set_rst(PERIPH_MCPWM0_MODULE);
periph_ll_disable_clk_set_rst(PERIPH_PARLIO_MODULE);
periph_ll_disable_clk_set_rst(PERIPH_GDMA_MODULE);
periph_ll_disable_clk_set_rst(PERIPH_SPI2_MODULE);
periph_ll_disable_clk_set_rst(PERIPH_TEMPSENSOR_MODULE);
periph_ll_disable_clk_set_rst(PERIPH_UHCI0_MODULE);
periph_ll_disable_clk_set_rst(PERIPH_SARADC_MODULE);
periph_ll_disable_clk_set_rst(PERIPH_SDIO_SLAVE_MODULE);
periph_ll_disable_clk_set_rst(PERIPH_RSA_MODULE);
periph_ll_disable_clk_set_rst(PERIPH_AES_MODULE);
periph_ll_disable_clk_set_rst(PERIPH_SHA_MODULE);
periph_ll_disable_clk_set_rst(PERIPH_ECC_MODULE);
periph_ll_disable_clk_set_rst(PERIPH_HMAC_MODULE);
periph_ll_disable_clk_set_rst(PERIPH_DS_MODULE);
REG_CLR_BIT(PCR_CTRL_TICK_CONF_REG, PCR_TICK_ENABLE);
REG_CLR_BIT(PCR_TRACE_CONF_REG, PCR_TRACE_CLK_EN);
REG_CLR_BIT(PCR_RETENTION_CONF_REG, PCR_RETENTION_CLK_EN);
REG_CLR_BIT(PCR_MEM_MONITOR_CONF_REG, PCR_MEM_MONITOR_CLK_EN);
REG_CLR_BIT(PCR_PVT_MONITOR_CONF_REG, PCR_PVT_MONITOR_CLK_EN);
REG_CLR_BIT(PCR_PVT_MONITOR_FUNC_CLK_CONF_REG, PCR_PVT_MONITOR_FUNC_CLK_EN);
WRITE_PERI_REG(PCR_CTRL_CLK_OUT_EN_REG, 0);
#if CONFIG_SERIAL_ESP32_USB
usb_serial_jtag_ll_enable_bus_clock(false);
#endif
}
if ((rst_reason == RESET_REASON_CHIP_POWER_ON) ||
(rst_reason == RESET_REASON_CHIP_BROWN_OUT) ||
(rst_reason == RESET_REASON_SYS_RTC_WDT) ||
(rst_reason == RESET_REASON_SYS_SUPER_WDT)) {
periph_ll_disable_clk_set_rst(PERIPH_LP_I2C0_MODULE);
CLEAR_PERI_REG_MASK(LPPERI_CLK_EN_REG, LPPERI_RNG_CK_EN);
CLEAR_PERI_REG_MASK(LPPERI_CLK_EN_REG, LPPERI_LP_UART_CK_EN);
CLEAR_PERI_REG_MASK(LPPERI_CLK_EN_REG, LPPERI_OTP_DBG_CK_EN);
CLEAR_PERI_REG_MASK(LPPERI_CLK_EN_REG, LPPERI_LP_EXT_I2C_CK_EN);
CLEAR_PERI_REG_MASK(LPPERI_CLK_EN_REG, LPPERI_LP_CPU_CK_EN);
WRITE_PERI_REG(LP_CLKRST_LP_CLK_PO_EN_REG, 0);
}
}
#else
static void esp32_clock_perip_init(void)
{
uint32_t common_perip_clk;
uint32_t hwcrypto_perip_clk;
uint32_t wifi_bt_sdio_clk;
#if !defined(CONFIG_SOC_SERIES_ESP32)
uint32_t common_perip_clk1;
#endif
/* For reason that only reset CPU, do not disable the clocks
* that have been enabled before reset.
*/
if (reset_reason_is_cpu_reset()) {
#if defined(CONFIG_SOC_SERIES_ESP32C2) || \
defined(CONFIG_SOC_SERIES_ESP32C3) || \
defined(CONFIG_SOC_SERIES_ESP32S3)
common_perip_clk = ~READ_PERI_REG(SYSTEM_PERIP_CLK_EN0_REG);
hwcrypto_perip_clk = ~READ_PERI_REG(SYSTEM_PERIP_CLK_EN1_REG);
wifi_bt_sdio_clk = ~READ_PERI_REG(SYSTEM_WIFI_CLK_EN_REG);
#else /* CONFIG_SOC_SERIES_ESP32 || CONFIG_SOC_SERIES_ESP32S2 */
common_perip_clk = ~DPORT_READ_PERI_REG(DPORT_PERIP_CLK_EN_REG);
hwcrypto_perip_clk = ~DPORT_READ_PERI_REG(DPORT_PERI_CLK_EN_REG);
wifi_bt_sdio_clk = ~DPORT_READ_PERI_REG(DPORT_WIFI_CLK_EN_REG);
#endif
#if defined(CONFIG_SOC_SERIES_ESP32S2)
hwcrypto_perip_clk = ~DPORT_READ_PERI_REG(DPORT_PERIP_CLK_EN1_REG);
#endif
} else {
common_perip_clk =
#if defined(CONFIG_SOC_SERIES_ESP32C2)
SYSTEM_SPI2_CLK_EN |
#if ESP_CONSOLE_UART_NUM != 0
SYSTEM_UART_CLK_EN |
#endif
#if ESP_CONSOLE_UART_NUM != 1
SYSTEM_UART1_CLK_EN |
#endif
SYSTEM_LEDC_CLK_EN |
SYSTEM_I2C_EXT0_CLK_EN |
SYSTEM_LEDC_CLK_EN;
#elif (defined(CONFIG_SOC_SERIES_ESP32C3) || defined(CONFIG_SOC_SERIES_ESP32S3))
SYSTEM_WDG_CLK_EN |
SYSTEM_I2S0_CLK_EN |
#if ESP_CONSOLE_UART_NUM != 0
SYSTEM_UART_CLK_EN |
#endif
#if ESP_CONSOLE_UART_NUM != 1
SYSTEM_UART1_CLK_EN |
#endif
#if defined(CONFIG_SOC_SERIES_ESP32S3)
#if ESP_CONSOLE_UART_NUM != 2
SYSTEM_UART2_CLK_EN |
#endif
SYSTEM_USB_CLK_EN |
SYSTEM_PCNT_CLK_EN |
SYSTEM_LEDC_CLK_EN |
SYSTEM_PWM0_CLK_EN |
SYSTEM_PWM1_CLK_EN |
SYSTEM_PWM2_CLK_EN |
SYSTEM_PWM3_CLK_EN |
#endif /* CONFIG_SOC_SERIES_ESP32S3 */
SYSTEM_SPI2_CLK_EN |
SYSTEM_I2C_EXT0_CLK_EN |
SYSTEM_UHCI0_CLK_EN |
SYSTEM_RMT_CLK_EN |
SYSTEM_LEDC_CLK_EN |
SYSTEM_TIMERGROUP1_CLK_EN |
SYSTEM_SPI3_CLK_EN |
SYSTEM_SPI4_CLK_EN |
SYSTEM_TWAI_CLK_EN |
SYSTEM_I2S1_CLK_EN |
SYSTEM_SPI2_DMA_CLK_EN |
SYSTEM_SPI3_DMA_CLK_EN;
#else /* CONFIG_SOC_SERIES_ESP32 || CONFIG_SOC_SERIES_ESP32S2 */
DPORT_WDG_CLK_EN |
DPORT_PCNT_CLK_EN |
DPORT_LEDC_CLK_EN |
DPORT_TIMERGROUP1_CLK_EN |
DPORT_PWM0_CLK_EN |
DPORT_TWAI_CLK_EN |
DPORT_PWM1_CLK_EN |
DPORT_PWM2_CLK_EN |
#if defined(CONFIG_SOC_SERIES_ESP32S2)
DPORT_I2S0_CLK_EN |
DPORT_SPI2_CLK_EN |
DPORT_I2C_EXT0_CLK_EN |
DPORT_UHCI0_CLK_EN |
DPORT_RMT_CLK_EN |
DPORT_SPI3_CLK_EN |
DPORT_PWM0_CLK_EN |
DPORT_TWAI_CLK_EN |
DPORT_I2S1_CLK_EN |
DPORT_SPI2_DMA_CLK_EN |
DPORT_SPI3_DMA_CLK_EN |
#endif /* CONFIG_SOC_SERIES_ESP32S2 */
DPORT_PWM3_CLK_EN;
#endif
#if !defined(CONFIG_SOC_SERIES_ESP32)
common_perip_clk1 = 0;
#endif
hwcrypto_perip_clk =
#if defined(CONFIG_SOC_SERIES_ESP32)
DPORT_PERI_EN_AES |
DPORT_PERI_EN_SHA |
DPORT_PERI_EN_RSA |
DPORT_PERI_EN_SECUREBOOT;
#endif /* CONFIG_SOC_SERIES_ESP32 */
#if defined(CONFIG_SOC_SERIES_ESP32S2)
DPORT_CRYPTO_AES_CLK_EN |
DPORT_CRYPTO_SHA_CLK_EN |
DPORT_CRYPTO_RSA_CLK_EN;
#endif /* CONFIG_SOC_SERIES_ESP32S2 */
#if defined(CONFIG_SOC_SERIES_ESP32C2)
SYSTEM_CRYPTO_SHA_CLK_EN;
#endif
#if (defined(CONFIG_SOC_SERIES_ESP32C3) || defined(CONFIG_SOC_SERIES_ESP32S3))
SYSTEM_CRYPTO_AES_CLK_EN |
SYSTEM_CRYPTO_SHA_CLK_EN |
SYSTEM_CRYPTO_RSA_CLK_EN;
#endif /* CONFIG_SOC_SERIES_ESP32C3 || CONFIG_SOC_SERIES_ESP32S3 */
wifi_bt_sdio_clk =
#if defined(CONFIG_SOC_SERIES_ESP32C2)
SYSTEM_WIFI_CLK_WIFI_EN |
SYSTEM_WIFI_CLK_BT_EN_M |
SYSTEM_WIFI_CLK_UNUSED_BIT5 |
SYSTEM_WIFI_CLK_UNUSED_BIT12;
#elif (defined(CONFIG_SOC_SERIES_ESP32C3) || defined(CONFIG_SOC_SERIES_ESP32S3))
SYSTEM_WIFI_CLK_WIFI_EN |
SYSTEM_WIFI_CLK_BT_EN_M |
SYSTEM_WIFI_CLK_I2C_CLK_EN |
#if defined(CONFIG_SOC_SERIES_ESP32S3)
SYSTEM_WIFI_CLK_SDIO_HOST_EN |
#endif /* CONFIG_SOC_SERIES_ESP32S3 */
SYSTEM_WIFI_CLK_UNUSED_BIT12;
#else /* CONFIG_SOC_SERIES_ESP32 || CONFIG_SOC_SERIES_ESP32S2 */
DPORT_WIFI_CLK_WIFI_EN |
DPORT_WIFI_CLK_BT_EN_M |
DPORT_WIFI_CLK_UNUSED_BIT5 |
DPORT_WIFI_CLK_UNUSED_BIT12 |
DPORT_WIFI_CLK_SDIOSLAVE_EN |
DPORT_WIFI_CLK_SDIO_HOST_EN |
DPORT_WIFI_CLK_EMAC_EN;
#endif /* CONFIG_SOC_SERIES_ESP32C3 */
}
/* Reset peripherals like I2C, SPI, UART, I2S and bring them to known state */
common_perip_clk |=
#if defined(CONFIG_SOC_SERIES_ESP32C2)
SYSTEM_SPI2_CLK_EN |
#if ESP_CONSOLE_UART_NUM != 0
SYSTEM_UART_CLK_EN |
#endif
#if ESP_CONSOLE_UART_NUM != 1
SYSTEM_UART1_CLK_EN |
#endif
SYSTEM_I2C_EXT0_CLK_EN;
#elif (defined(CONFIG_SOC_SERIES_ESP32C3) || defined(CONFIG_SOC_SERIES_ESP32S3))
SYSTEM_I2S0_CLK_EN |
#if ESP_CONSOLE_UART_NUM != 0
SYSTEM_UART_CLK_EN |
#endif
#if ESP_CONSOLE_UART_NUM != 1
SYSTEM_UART1_CLK_EN |
#endif
#if defined(CONFIG_SOC_SERIES_ESP32S3)
#if ESP_CONSOLE_UART_NUM != 2
SYSTEM_UART2_CLK_EN |
#endif
SYSTEM_USB_CLK_EN |
#endif
SYSTEM_SPI2_CLK_EN |
SYSTEM_I2C_EXT0_CLK_EN |
SYSTEM_UHCI0_CLK_EN |
SYSTEM_RMT_CLK_EN |
SYSTEM_UHCI1_CLK_EN |
SYSTEM_SPI3_CLK_EN |
SYSTEM_SPI4_CLK_EN |
SYSTEM_I2C_EXT1_CLK_EN |
SYSTEM_I2S1_CLK_EN |
SYSTEM_SPI2_DMA_CLK_EN |
SYSTEM_SPI3_DMA_CLK_EN;
#else
DPORT_I2S0_CLK_EN |
DPORT_SPI2_CLK_EN |
DPORT_I2C_EXT0_CLK_EN |
DPORT_UHCI0_CLK_EN |
DPORT_RMT_CLK_EN |
DPORT_UHCI1_CLK_EN |
DPORT_SPI3_CLK_EN |
DPORT_I2C_EXT1_CLK_EN |
#if ESP_CONSOLE_UART_NUM != 0
DPORT_UART_CLK_EN |
#endif
#if ESP_CONSOLE_UART_NUM != 1
DPORT_UART1_CLK_EN |
#endif
#if defined(CONFIG_SOC_SERIES_ESP32)
DPORT_SPI_DMA_CLK_EN |
#if ESP_CONSOLE_UART_NUM != 2
DPORT_UART2_CLK_EN |
#endif
#endif /* CONFIG_SOC_SERIES_ESP32 */
#if defined(CONFIG_SOC_SERIES_ESP32S2)
DPORT_USB_CLK_EN |
DPORT_SPI2_DMA_CLK_EN |
DPORT_SPI3_DMA_CLK_EN |
#endif /* CONFIG_SOC_SERIES_ESP32S2 */
DPORT_I2S1_CLK_EN;
#endif /* CONFIG_SOC_SERIES_ESP32C3 */
#if !defined(CONFIG_SOC_SERIES_ESP32)
common_perip_clk1 = 0;
#endif
#if defined(CONFIG_SOC_SERIES_ESP32)
common_perip_clk &= ~DPORT_SPI01_CLK_EN;
#if defined(CONFIG_SPIRAM_SPEED_80M)
/*
* 80MHz SPIRAM uses SPI2/SPI3 as well; it's initialized before this is called. Because it
* is used in a weird mode where clock to the peripheral is disabled but reset is also
* disabled, it 'hangs' in a state where it outputs a continuous 80MHz signal. Mask its bit
* here because we should not modify that state, regardless of what we calculated earlier.
*/
common_perip_clk &= ~DPORT_SPI2_CLK_EN;
common_perip_clk &= ~DPORT_SPI3_CLK_EN;
#endif
#endif /* CONFIG_SOC_SERIES_ESP32 */
/* Change I2S clock to audio PLL first. Because if I2S uses 160MHz clock,
* the current is not reduced when disable I2S clock.
*/
#if defined(CONFIG_SOC_SERIES_ESP32)
DPORT_SET_PERI_REG_MASK(I2S_CLKM_CONF_REG(0), I2S_CLKA_ENA);
DPORT_SET_PERI_REG_MASK(I2S_CLKM_CONF_REG(1), I2S_CLKA_ENA);
#endif /* CONFIG_SOC_SERIES_ESP32 */
#if defined(CONFIG_SOC_SERIES_ESP32S2)
REG_SET_FIELD(I2S_CLKM_CONF_REG(0), I2S_CLK_SEL, I2S_CLK_AUDIO_PLL);
REG_SET_FIELD(I2S_CLKM_CONF_REG(1), I2S_CLK_SEL, I2S_CLK_AUDIO_PLL);
#endif /* CONFIG_SOC_SERIES_ESP32S2 */
/* Disable some peripheral clocks. */
#if defined(CONFIG_SOC_SERIES_ESP32C2) || \
defined(CONFIG_SOC_SERIES_ESP32C3) || \
defined(CONFIG_SOC_SERIES_ESP32S3)
CLEAR_PERI_REG_MASK(SYSTEM_PERIP_CLK_EN0_REG, common_perip_clk);
SET_PERI_REG_MASK(SYSTEM_PERIP_RST_EN0_REG, common_perip_clk);
CLEAR_PERI_REG_MASK(SYSTEM_PERIP_CLK_EN1_REG, common_perip_clk1);
SET_PERI_REG_MASK(SYSTEM_PERIP_RST_EN1_REG, common_perip_clk1);
#else /* CONFIG_SOC_SERIES_ESP32 || CONFIG_SOC_SERIES_ESP32S2 */
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, common_perip_clk);
DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, common_perip_clk);
#endif /* CONFIG_SOC_SERIES_ESP32C3 || CONFIG_SOC_SERIES_ESP32S3 */
#if defined(CONFIG_SOC_SERIES_ESP32S2)
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN1_REG, common_perip_clk1);
DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN1_REG, common_perip_clk1);
#endif
/* Disable hardware crypto clocks. */
#if defined(CONFIG_SOC_SERIES_ESP32C2) || \
defined(CONFIG_SOC_SERIES_ESP32C3) || \
defined(CONFIG_SOC_SERIES_ESP32S3)
CLEAR_PERI_REG_MASK(SYSTEM_PERIP_CLK_EN1_REG, hwcrypto_perip_clk);
SET_PERI_REG_MASK(SYSTEM_PERIP_RST_EN1_REG, hwcrypto_perip_clk);
#elif defined(CONFIG_SOC_SERIES_ESP32)
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERI_CLK_EN_REG, hwcrypto_perip_clk);
DPORT_SET_PERI_REG_MASK(DPORT_PERI_RST_EN_REG, hwcrypto_perip_clk);
#elif defined(CONFIG_SOC_SERIES_ESP32S2)
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN1_REG, hwcrypto_perip_clk);
DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN1_REG, hwcrypto_perip_clk);
#endif /* CONFIG_SOC_SERIES_ESP32C3 || CONFIG_SOC_SERIES_ESP32S3 */
#if defined(CONFIG_SOC_SERIES_ESP32S3)
/* Force clear backup dma reset signal. This is a fix to the backup dma
* implementation in the ROM, the reset signal was not cleared when the
* backup dma was started, which caused the backup dma operation to fail.
*/
CLEAR_PERI_REG_MASK(SYSTEM_PERIP_RST_EN1_REG, SYSTEM_PERI_BACKUP_RST);
#endif /* CONFIG_SOC_SERIES_ESP32S3 */
/* Disable WiFi/BT/SDIO clocks. */
#if defined(CONFIG_SOC_SERIES_ESP32C2) || \
defined(CONFIG_SOC_SERIES_ESP32C3) || \
defined(CONFIG_SOC_SERIES_ESP32S3)
CLEAR_PERI_REG_MASK(SYSTEM_WIFI_CLK_EN_REG, wifi_bt_sdio_clk);
SET_PERI_REG_MASK(SYSTEM_WIFI_CLK_EN_REG, SYSTEM_WIFI_CLK_EN);
#else /* CONFIG_SOC_SERIES_ESP32 || CONFIG_SOC_SERIES_ESP32S2 */
DPORT_CLEAR_PERI_REG_MASK(DPORT_WIFI_CLK_EN_REG, wifi_bt_sdio_clk);
#endif /* CONFIG_SOC_SERIES_ESP32C3 || CONFIG_SOC_SERIES_ESP32S3 */
#if defined(CONFIG_SOC_SERIES_ESP32S2)
/* Enable WiFi MAC and POWER clocks */
DPORT_SET_PERI_REG_MASK(DPORT_WIFI_CLK_EN_REG, DPORT_WIFI_CLK_WIFI_EN);
#endif
#if defined(CONFIG_SOC_SERIES_ESP32C2) || \
defined(CONFIG_SOC_SERIES_ESP32C3) || \
defined(CONFIG_SOC_SERIES_ESP32S3)
/* Set WiFi light sleep clock source to RTC slow clock */
REG_SET_FIELD(SYSTEM_BT_LPCK_DIV_INT_REG, SYSTEM_BT_LPCK_DIV_NUM, 0);
CLEAR_PERI_REG_MASK(SYSTEM_BT_LPCK_DIV_FRAC_REG, SYSTEM_LPCLK_SEL_8M);
SET_PERI_REG_MASK(SYSTEM_BT_LPCK_DIV_FRAC_REG, SYSTEM_LPCLK_SEL_RTC_SLOW);
#elif defined(CONFIG_SOC_SERIES_ESP32S2)
/* Set WiFi light sleep clock source to RTC slow clock */
DPORT_REG_SET_FIELD(DPORT_BT_LPCK_DIV_INT_REG, DPORT_BT_LPCK_DIV_NUM, 0);
DPORT_CLEAR_PERI_REG_MASK(DPORT_BT_LPCK_DIV_FRAC_REG, DPORT_LPCLK_SEL_8M);
DPORT_SET_PERI_REG_MASK(DPORT_BT_LPCK_DIV_FRAC_REG, DPORT_LPCLK_SEL_RTC_SLOW);
#endif
/* Enable RNG clock. */
periph_module_enable(PERIPH_RNG_MODULE);
#if defined(CONFIG_SOC_SERIES_ESP32C2) || \
defined(CONFIG_SOC_SERIES_ESP32C3) || \
defined(CONFIG_SOC_SERIES_ESP32S3)
periph_module_enable(PERIPH_TIMG0_MODULE);
#endif
}
#endif
static enum clock_control_status clock_control_esp32_get_status(const struct device *dev,
clock_control_subsys_t sys)
{
ARG_UNUSED(dev);
uint32_t clk_en_reg = periph_ll_get_clk_en_reg((periph_module_t)sys);
uint32_t clk_en_mask = periph_ll_get_clk_en_mask((periph_module_t)sys);
if (DPORT_GET_PERI_REG_MASK(clk_en_reg, clk_en_mask)) {
return CLOCK_CONTROL_STATUS_ON;
}
return CLOCK_CONTROL_STATUS_OFF;
}
static int clock_control_esp32_on(const struct device *dev, clock_control_subsys_t sys)
{
enum clock_control_status status = clock_control_esp32_get_status(dev, sys);
if (status == CLOCK_CONTROL_STATUS_ON && !reset_reason_is_cpu_reset()) {
return -EALREADY;
}
periph_module_enable((periph_module_t)sys);
return 0;
}
static int clock_control_esp32_off(const struct device *dev, clock_control_subsys_t sys)
{
enum clock_control_status status = clock_control_esp32_get_status(dev, sys);
if (status == CLOCK_CONTROL_STATUS_ON) {
periph_module_disable((periph_module_t)sys);
}
return 0;
}
static int clock_control_esp32_get_rate(const struct device *dev, clock_control_subsys_t sys,
uint32_t *rate)
{
ARG_UNUSED(dev);
switch ((int)sys) {
case ESP32_CLOCK_CONTROL_SUBSYS_RTC_FAST:
*rate = esp_clk_tree_lp_fast_get_freq_hz(ESP_CLK_TREE_SRC_FREQ_PRECISION_APPROX);
break;
case ESP32_CLOCK_CONTROL_SUBSYS_RTC_SLOW:
*rate = clk_hal_lp_slow_get_freq_hz();
break;
default:
*rate = clk_hal_cpu_get_freq_hz();
}
return 0;
}
static int esp32_select_rtc_slow_clk(uint8_t slow_clk)
{
#if !defined(CONFIG_SOC_SERIES_ESP32C6)
soc_rtc_slow_clk_src_t rtc_slow_clk_src = slow_clk & RTC_CNTL_ANA_CLK_RTC_SEL_V;
#else
soc_rtc_slow_clk_src_t rtc_slow_clk_src = slow_clk;
#endif
uint32_t cal_val = 0;
/* number of times to repeat 32k XTAL calibration
* before giving up and switching to the internal RC
*/
int retry_32k_xtal = 3;
do {
#if defined(CONFIG_SOC_SERIES_ESP32C2)
if (rtc_slow_clk_src == ESP32_RTC_SLOW_CLK_SRC_OSC_SLOW) {
/* external clock needs to be connected to PIN0 before it can
* be used. Here we use rtc_clk_cal function to count
* the number of ext clk cycles in the given number of ext clk
* cycles. If the ext clk has not started up, calibration
* will time out, returning 0.
*/
LOG_DBG("waiting for external clock by pin0 to start up");
rtc_clk_32k_enable_external();
#else
if (rtc_slow_clk_src == ESP32_RTC_SLOW_CLK_SRC_XTAL32K) {
/* 32k XTAL oscillator needs to be enabled and running before it can
* be used. Hardware doesn't have a direct way of checking if the
* oscillator is running. Here we use rtc_clk_cal function to count
* the number of main XTAL cycles in the given number of 32k XTAL
* oscillator cycles. If the 32k XTAL has not started up, calibration
* will time out, returning 0.
*/
LOG_DBG("waiting for 32k oscillator to start up");
if (slow_clk == ESP32_RTC_SLOW_CLK_SRC_XTAL32K) {
rtc_clk_32k_enable(true);
} else if (slow_clk == ESP32_RTC_SLOW_CLK_32K_EXT_OSC) {
rtc_clk_32k_enable_external();
}
#endif
/* When CONFIG_RTC_CLK_CAL_CYCLES is set to 0, clock calibration will not be
* performed at startup.
*/
if (CONFIG_RTC_CLK_CAL_CYCLES > 0) {
#if defined(CONFIG_SOC_SERIES_ESP32C2)
cal_val = rtc_clk_cal(RTC_CAL_32K_OSC_SLOW,
CONFIG_RTC_CLK_CAL_CYCLES);
#else
cal_val = rtc_clk_cal(RTC_CAL_32K_XTAL, CONFIG_RTC_CLK_CAL_CYCLES);
#endif
if (cal_val == 0) {
if (retry_32k_xtal-- > 0) {
continue;
}
LOG_ERR("32 kHz XTAL not found");
return -ENODEV;
}
}
#if defined(CONFIG_SOC_SERIES_ESP32C6)
} else if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_RC32K) {
rtc_clk_rc32k_enable(true);
}
#else
} else if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_RC_FAST_D256) {
rtc_clk_8m_enable(true, true);
}
#endif
rtc_clk_slow_src_set(rtc_slow_clk_src);
if (CONFIG_RTC_CLK_CAL_CYCLES > 0) {
cal_val = rtc_clk_cal(RTC_CAL_RTC_MUX, CONFIG_RTC_CLK_CAL_CYCLES);
} else {
const uint64_t cal_dividend = (1ULL << RTC_CLK_CAL_FRACT) * 1000000ULL;
cal_val = (uint32_t)(cal_dividend / rtc_clk_slow_freq_get_hz());
}
} while (cal_val == 0);
LOG_DBG("RTC_SLOW_CLK calibration value: %d", cal_val);
esp_clk_slowclk_cal_set(cal_val);
return 0;
}
static int esp32_cpu_clock_configure(const struct esp32_cpu_clock_config *cpu_cfg)
{
rtc_cpu_freq_config_t old_config;
rtc_cpu_freq_config_t new_config;
rtc_clk_config_t rtc_clk_cfg = RTC_CLK_CONFIG_DEFAULT();
bool ret;
rtc_clk_cfg.xtal_freq = cpu_cfg->xtal_freq;
rtc_clk_cfg.cpu_freq_mhz = cpu_cfg->cpu_freq;
esp_rom_uart_tx_wait_idle(ESP_CONSOLE_UART_NUM);
#if defined(CONFIG_SOC_SERIES_ESP32C6)
rtc_clk_modem_clock_domain_active_state_icg_map_preinit();
REG_SET_FIELD(LP_CLKRST_FOSC_CNTL_REG, LP_CLKRST_FOSC_DFREQ, rtc_clk_cfg.clk_8m_dfreq);
REGI2C_WRITE_MASK(I2C_DIG_REG, I2C_DIG_REG_SCK_DCAP, rtc_clk_cfg.slow_clk_dcap);
REG_SET_FIELD(LP_CLKRST_RC32K_CNTL_REG, LP_CLKRST_RC32K_DFREQ, rtc_clk_cfg.rc32k_dfreq);
#else
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_SCK_DCAP, rtc_clk_cfg.slow_clk_dcap);
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DFREQ, rtc_clk_cfg.clk_8m_dfreq);
#endif
#if defined(CONFIG_SOC_SERIES_ESP32)
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL, rtc_clk_cfg.clk_8m_div - 1);
#elif defined(CONFIG_SOC_SERIES_ESP32C6)
clk_ll_rc_fast_tick_conf();
#else
/* Configure 150k clock division */
rtc_clk_divider_set(rtc_clk_cfg.clk_rtc_clk_div);
/* Configure 8M clock division */
rtc_clk_8m_divider_set(rtc_clk_cfg.clk_8m_clk_div);
#endif
#if !defined(CONFIG_SOC_SERIES_ESP32C6)
/* Reset (disable) i2c internal bus for all regi2c registers */
regi2c_ctrl_ll_i2c_reset();
/* Enable the internal bus used to configure BBPLL */
regi2c_ctrl_ll_i2c_bbpll_enable();
#endif
#if defined(CONFIG_SOC_SERIES_ESP32S2) || defined(CONFIG_SOC_SERIES_ESP32)
regi2c_ctrl_ll_i2c_apll_enable();
#endif
#if !defined(CONFIG_SOC_SERIES_ESP32S2)
rtc_clk_xtal_freq_update(rtc_clk_cfg.xtal_freq);
#endif
#if defined(CONFIG_SOC_SERIES_ESP32C6)
/* On ESP32C6, MSPI source clock's default HS divider leads to 120MHz,
* which is unusable before calibration. Therefore, before switching
* SOC_ROOT_CLK to HS, we need to set MSPI source clock HS divider
* to make it run at 80MHz after the switch. PLL = 480MHz, so divider is 6.
*/
clk_ll_mspi_fast_set_hs_divider(6);
#else
rtc_clk_apb_freq_update(rtc_clk_cfg.xtal_freq * MHZ(1));
#endif
/* Set CPU frequency */
rtc_clk_cpu_freq_get_config(&old_config);
ret = rtc_clk_cpu_freq_mhz_to_config(rtc_clk_cfg.cpu_freq_mhz, &new_config);
if (!ret || (new_config.source != cpu_cfg->clk_src)) {
LOG_ERR("invalid CPU frequency value");
return -EINVAL;
}
rtc_clk_cpu_freq_set_config(&new_config);
/* Re-calculate the ccount to make time calculation correct. */
esp_cpu_set_cycle_count((uint64_t)esp_cpu_get_cycle_count() * rtc_clk_cfg.cpu_freq_mhz /
old_config.freq_mhz);
#if !defined(ESP_CONSOLE_UART_NONE)
#if !defined(CONFIG_SOC_SERIES_ESP32C2) && !defined(CONFIG_SOC_SERIES_ESP32C6)
#if defined(CONFIG_MCUBOOT) && defined(ESP_ROM_UART_CLK_IS_XTAL)
uint32_t uart_clock_src_hz = (uint32_t)rtc_clk_xtal_freq_get() * MHZ(1);
#else
uint32_t uart_clock_src_hz = esp_clk_apb_freq();
#endif
esp_rom_uart_set_clock_baudrate(ESP_CONSOLE_UART_NUM, uart_clock_src_hz,
ESP_CONSOLE_UART_BAUDRATE);
#endif
#endif
return 0;
}
static int clock_control_esp32_configure(const struct device *dev, clock_control_subsys_t sys,
void *data)
{
struct esp32_clock_config *new_cfg = data;
int ret = 0;
switch ((int)sys) {
case ESP32_CLOCK_CONTROL_SUBSYS_RTC_FAST:
rtc_clk_fast_src_set(new_cfg->rtc.rtc_fast_clock_src);
break;
case ESP32_CLOCK_CONTROL_SUBSYS_RTC_SLOW:
ret = esp32_select_rtc_slow_clk(new_cfg->rtc.rtc_slow_clock_src);
break;
case ESP32_CLOCK_CONTROL_SUBSYS_CPU:
/* Normalize frequency */
new_cfg->cpu.xtal_freq = new_cfg->cpu.xtal_freq > MHZ(1)
? new_cfg->cpu.xtal_freq / MHZ(1)
: new_cfg->cpu.xtal_freq;
new_cfg->cpu.cpu_freq = new_cfg->cpu.cpu_freq > MHZ(1)
? new_cfg->cpu.cpu_freq / MHZ(1)
: new_cfg->cpu.cpu_freq;
ret = esp32_cpu_clock_configure(&new_cfg->cpu);
break;
default:
LOG_ERR("Unsupported subsystem %d", (int)sys);
return -EINVAL;
}
return ret;
}
static int clock_control_esp32_init(const struct device *dev)
{
const struct esp32_clock_config *cfg = dev->config;
bool ret;
soc_reset_reason_t rst_reas;
rst_reas = esp_rom_get_reset_reason(0);
#if defined(CONFIG_SOC_SERIES_ESP32C6)
pmu_init();
if (rst_reas == RESET_REASON_CHIP_POWER_ON) {
esp_ocode_calib_init();
}
#else /* CONFIG_SOC_SERIES_ESP32C6 */
rtc_config_t rtc_cfg = RTC_CONFIG_DEFAULT();
#if !defined(CONFIG_SOC_SERIES_ESP32)
if (rst_reas == RESET_REASON_CHIP_POWER_ON
#if SOC_EFUSE_HAS_EFUSE_RST_BUG
|| rst_reas == RESET_REASON_CORE_EFUSE_CRC
#endif /* SOC_EFUSE_HAS_EFUSE_RST_BUG */
) {
rtc_cfg.cali_ocode = 1;
}
#endif /* !CONFIG_SOC_SERIES_ESP32 */
rtc_init(rtc_cfg);
#endif /* CONFIG_SOC_SERIES_ESP32C6 */
ret = esp32_cpu_clock_configure(&cfg->cpu);
if (ret) {
LOG_ERR("Failed to configure CPU clock");
return ret;
}
rtc_clk_fast_src_set(cfg->rtc.rtc_fast_clock_src);
ret = esp32_select_rtc_slow_clk(cfg->rtc.rtc_slow_clock_src);
if (ret) {
LOG_ERR("Failed to configure RTC clock");
return ret;
}
esp32_clock_perip_init();
return 0;
}
static const struct clock_control_driver_api clock_control_esp32_api = {
.on = clock_control_esp32_on,
.off = clock_control_esp32_off,
.get_rate = clock_control_esp32_get_rate,
.get_status = clock_control_esp32_get_status,
.configure = clock_control_esp32_configure,
};
static const struct esp32_cpu_clock_config esp32_cpu_clock_config0 = {
.clk_src = DT_PROP(DT_INST(0, DT_CPU_COMPAT), clock_source),
.cpu_freq = (DT_PROP(DT_INST(0, DT_CPU_COMPAT), clock_frequency) / MHZ(1)),
.xtal_freq = ((DT_PROP(DT_INST(0, DT_CPU_COMPAT), xtal_freq)) / MHZ(1)),
};
static const struct esp32_rtc_clock_config esp32_rtc_clock_config0 = {
.rtc_fast_clock_src = DT_PROP(DT_INST(0, espressif_esp32_rtc), fast_clk_src),
.rtc_slow_clock_src = DT_PROP(DT_INST(0, espressif_esp32_rtc), slow_clk_src),
};
static const struct esp32_clock_config esp32_clock_config0 = {
.cpu = esp32_cpu_clock_config0,
.rtc = esp32_rtc_clock_config0
};
DEVICE_DT_DEFINE(DT_NODELABEL(rtc),
clock_control_esp32_init,
NULL,
NULL,
&esp32_clock_config0,
PRE_KERNEL_1,
CONFIG_CLOCK_CONTROL_INIT_PRIORITY,
&clock_control_esp32_api);