329 lines
9.0 KiB
C++
329 lines
9.0 KiB
C++
/*
|
|
* Copyright (c) 2011-2014, Wind River Systems, Inc.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @brief Misc utilities
|
|
*
|
|
* Misc utilities usable by the kernel and application code.
|
|
*/
|
|
|
|
#ifndef _UTIL__H_
|
|
#define _UTIL__H_
|
|
|
|
#ifndef _ASMLANGUAGE
|
|
|
|
#include <zephyr/types.h>
|
|
|
|
/* Helper to pass a int as a pointer or vice-versa.
|
|
* Those are available for 32 bits architectures:
|
|
*/
|
|
#define POINTER_TO_UINT(x) ((u32_t) (x))
|
|
#define UINT_TO_POINTER(x) ((void *) (x))
|
|
#define POINTER_TO_INT(x) ((s32_t) (x))
|
|
#define INT_TO_POINTER(x) ((void *) (x))
|
|
|
|
/* Evaluates to 0 if cond is true-ish; compile error otherwise */
|
|
#define ZERO_OR_COMPILE_ERROR(cond) ((int) sizeof(char[1 - 2 * !(cond)]) - 1)
|
|
|
|
/* Evaluates to 0 if array is an array; compile error if not array (e.g.
|
|
* pointer)
|
|
*/
|
|
#define IS_ARRAY(array) \
|
|
ZERO_OR_COMPILE_ERROR( \
|
|
!__builtin_types_compatible_p(__typeof__(array), \
|
|
__typeof__(&(array)[0])))
|
|
|
|
#if defined(__cplusplus)
|
|
template < class T, size_t N >
|
|
constexpr size_t ARRAY_SIZE(T(&)[N]) { return N; }
|
|
|
|
#else
|
|
/* Evaluates to number of elements in an array; compile error if not
|
|
* an array (e.g. pointer)
|
|
*/
|
|
#define ARRAY_SIZE(array) \
|
|
((unsigned long) (IS_ARRAY(array) + \
|
|
(sizeof(array) / sizeof((array)[0]))))
|
|
#endif
|
|
|
|
/* Evaluates to 1 if ptr is part of array, 0 otherwise; compile error if
|
|
* "array" argument is not an array (e.g. "ptr" and "array" mixed up)
|
|
*/
|
|
#define PART_OF_ARRAY(array, ptr) \
|
|
((ptr) && ((ptr) >= &array[0] && (ptr) < &array[ARRAY_SIZE(array)]))
|
|
|
|
#define CONTAINER_OF(ptr, type, field) \
|
|
((type *)(((char *)(ptr)) - offsetof(type, field)))
|
|
|
|
/* round "x" up/down to next multiple of "align" (which must be a power of 2) */
|
|
#define ROUND_UP(x, align) \
|
|
(((unsigned long)(x) + ((unsigned long)align - 1)) & \
|
|
~((unsigned long)align - 1))
|
|
#define ROUND_DOWN(x, align) ((unsigned long)(x) & ~((unsigned long)align - 1))
|
|
|
|
#define ceiling_fraction(numerator, divider) \
|
|
(((numerator) + ((divider) - 1)) / (divider))
|
|
|
|
#ifdef INLINED
|
|
#define INLINE inline
|
|
#else
|
|
#define INLINE
|
|
#endif
|
|
|
|
#ifndef max
|
|
#define max(a, b) (((a) > (b)) ? (a) : (b))
|
|
#endif
|
|
|
|
#ifndef min
|
|
#define min(a, b) (((a) < (b)) ? (a) : (b))
|
|
#endif
|
|
|
|
static inline int is_power_of_two(unsigned int x)
|
|
{
|
|
return (x != 0) && !(x & (x - 1));
|
|
}
|
|
|
|
static inline s64_t arithmetic_shift_right(s64_t value, u8_t shift)
|
|
{
|
|
s64_t sign_ext;
|
|
|
|
if (shift == 0) {
|
|
return value;
|
|
}
|
|
|
|
/* extract sign bit */
|
|
sign_ext = (value >> 63) & 1;
|
|
|
|
/* make all bits of sign_ext be the same as the value's sign bit */
|
|
sign_ext = -sign_ext;
|
|
|
|
/* shift value and fill opened bit positions with sign bit */
|
|
return (value >> shift) | (sign_ext << (64 - shift));
|
|
}
|
|
|
|
#endif /* !_ASMLANGUAGE */
|
|
|
|
/* KB, MB, GB */
|
|
#define KB(x) ((x) << 10)
|
|
#define MB(x) (KB(x) << 10)
|
|
#define GB(x) (MB(x) << 10)
|
|
|
|
/* KHZ, MHZ */
|
|
#define KHZ(x) ((x) * 1000)
|
|
#define MHZ(x) (KHZ(x) * 1000)
|
|
|
|
#ifndef BIT
|
|
#define BIT(n) (1UL << (n))
|
|
#endif
|
|
|
|
#define BIT_MASK(n) (BIT(n) - 1)
|
|
|
|
/**
|
|
* @brief Check for macro definition in compiler-visible expressions
|
|
*
|
|
* This trick was pioneered in Linux as the config_enabled() macro.
|
|
* The madness has the effect of taking a macro value that may be
|
|
* defined to "1" (e.g. CONFIG_MYFEATURE), or may not be defined at
|
|
* all and turning it into a literal expression that can be used at
|
|
* "runtime". That is, it works similarly to
|
|
* "defined(CONFIG_MYFEATURE)" does except that it is an expansion
|
|
* that can exist in a standard expression and be seen by the compiler
|
|
* and optimizer. Thus much ifdef usage can be replaced with cleaner
|
|
* expressions like:
|
|
*
|
|
* if (IS_ENABLED(CONFIG_MYFEATURE))
|
|
* myfeature_enable();
|
|
*
|
|
* INTERNAL
|
|
* First pass just to expand any existing macros, we need the macro
|
|
* value to be e.g. a literal "1" at expansion time in the next macro,
|
|
* not "(1)", etc... Standard recursive expansion does not work.
|
|
*/
|
|
#define IS_ENABLED(config_macro) _IS_ENABLED1(config_macro)
|
|
|
|
/* Now stick on a "_XXXX" prefix, it will now be "_XXXX1" if config_macro
|
|
* is "1", or just "_XXXX" if it's undefined.
|
|
* ENABLED: _IS_ENABLED2(_XXXX1)
|
|
* DISABLED _IS_ENABLED2(_XXXX)
|
|
*/
|
|
#define _IS_ENABLED1(config_macro) _IS_ENABLED2(_XXXX##config_macro)
|
|
|
|
/* Here's the core trick, we map "_XXXX1" to "_YYYY," (i.e. a string
|
|
* with a trailing comma), so it has the effect of making this a
|
|
* two-argument tuple to the preprocessor only in the case where the
|
|
* value is defined to "1"
|
|
* ENABLED: _YYYY, <--- note comma!
|
|
* DISABLED: _XXXX
|
|
*/
|
|
#define _XXXX1 _YYYY,
|
|
|
|
/* Then we append an extra argument to fool the gcc preprocessor into
|
|
* accepting it as a varargs macro.
|
|
* arg1 arg2 arg3
|
|
* ENABLED: _IS_ENABLED3(_YYYY, 1, 0)
|
|
* DISABLED _IS_ENABLED3(_XXXX 1, 0)
|
|
*/
|
|
#define _IS_ENABLED2(one_or_two_args) _IS_ENABLED3(one_or_two_args 1, 0)
|
|
|
|
/* And our second argument is thus now cooked to be 1 in the case
|
|
* where the value is defined to 1, and 0 if not:
|
|
*/
|
|
#define _IS_ENABLED3(ignore_this, val, ...) val
|
|
|
|
/**
|
|
* Macros for doing code-generation with the preprocessor.
|
|
*
|
|
* Generally it is better to generate code with the preprocessor than
|
|
* to copy-paste code or to generate code with the build system /
|
|
* python script's etc.
|
|
*
|
|
* http://stackoverflow.com/a/12540675
|
|
*/
|
|
#define UTIL_EMPTY(...)
|
|
#define UTIL_DEFER(...) __VA_ARGS__ UTIL_EMPTY()
|
|
#define UTIL_OBSTRUCT(...) __VA_ARGS__ UTIL_DEFER(UTIL_EMPTY)()
|
|
#define UTIL_EXPAND(...) __VA_ARGS__
|
|
|
|
#define UTIL_EVAL(...) UTIL_EVAL1(UTIL_EVAL1(UTIL_EVAL1(__VA_ARGS__)))
|
|
#define UTIL_EVAL1(...) UTIL_EVAL2(UTIL_EVAL2(UTIL_EVAL2(__VA_ARGS__)))
|
|
#define UTIL_EVAL2(...) UTIL_EVAL3(UTIL_EVAL3(UTIL_EVAL3(__VA_ARGS__)))
|
|
#define UTIL_EVAL3(...) UTIL_EVAL4(UTIL_EVAL4(UTIL_EVAL4(__VA_ARGS__)))
|
|
#define UTIL_EVAL4(...) UTIL_EVAL5(UTIL_EVAL5(UTIL_EVAL5(__VA_ARGS__)))
|
|
#define UTIL_EVAL5(...) __VA_ARGS__
|
|
|
|
#define UTIL_CAT(a, ...) UTIL_PRIMITIVE_CAT(a, __VA_ARGS__)
|
|
#define UTIL_PRIMITIVE_CAT(a, ...) a##__VA_ARGS__
|
|
|
|
#define UTIL_INC(x) UTIL_PRIMITIVE_CAT(UTIL_INC_, x)
|
|
#define UTIL_INC_0 1
|
|
#define UTIL_INC_1 2
|
|
#define UTIL_INC_2 3
|
|
#define UTIL_INC_3 4
|
|
#define UTIL_INC_4 5
|
|
#define UTIL_INC_5 6
|
|
#define UTIL_INC_6 7
|
|
#define UTIL_INC_7 8
|
|
#define UTIL_INC_8 9
|
|
#define UTIL_INC_9 10
|
|
#define UTIL_INC_10 11
|
|
#define UTIL_INC_11 12
|
|
#define UTIL_INC_12 13
|
|
#define UTIL_INC_13 14
|
|
#define UTIL_INC_14 15
|
|
#define UTIL_INC_15 16
|
|
#define UTIL_INC_16 17
|
|
#define UTIL_INC_17 18
|
|
#define UTIL_INC_18 19
|
|
#define UTIL_INC_19 19
|
|
|
|
#define UTIL_DEC(x) UTIL_PRIMITIVE_CAT(UTIL_DEC_, x)
|
|
#define UTIL_DEC_0 0
|
|
#define UTIL_DEC_1 0
|
|
#define UTIL_DEC_2 1
|
|
#define UTIL_DEC_3 2
|
|
#define UTIL_DEC_4 3
|
|
#define UTIL_DEC_5 4
|
|
#define UTIL_DEC_6 5
|
|
#define UTIL_DEC_7 6
|
|
#define UTIL_DEC_8 7
|
|
#define UTIL_DEC_9 8
|
|
#define UTIL_DEC_10 9
|
|
#define UTIL_DEC_11 10
|
|
#define UTIL_DEC_12 11
|
|
#define UTIL_DEC_13 12
|
|
#define UTIL_DEC_14 13
|
|
#define UTIL_DEC_15 14
|
|
#define UTIL_DEC_16 15
|
|
#define UTIL_DEC_17 16
|
|
#define UTIL_DEC_18 17
|
|
#define UTIL_DEC_19 18
|
|
#define UTIL_DEC_20 19
|
|
#define UTIL_DEC_21 20
|
|
#define UTIL_DEC_22 21
|
|
#define UTIL_DEC_23 22
|
|
#define UTIL_DEC_24 23
|
|
#define UTIL_DEC_25 24
|
|
#define UTIL_DEC_26 25
|
|
#define UTIL_DEC_27 26
|
|
#define UTIL_DEC_28 27
|
|
#define UTIL_DEC_29 28
|
|
#define UTIL_DEC_30 29
|
|
#define UTIL_DEC_31 30
|
|
#define UTIL_DEC_32 31
|
|
#define UTIL_DEC_33 32
|
|
#define UTIL_DEC_34 33
|
|
#define UTIL_DEC_35 34
|
|
#define UTIL_DEC_36 35
|
|
#define UTIL_DEC_37 36
|
|
#define UTIL_DEC_38 37
|
|
#define UTIL_DEC_39 38
|
|
#define UTIL_DEC_40 39
|
|
|
|
#define UTIL_CHECK_N(x, n, ...) n
|
|
#define UTIL_CHECK(...) UTIL_CHECK_N(__VA_ARGS__, 0,)
|
|
|
|
#define UTIL_NOT(x) UTIL_CHECK(UTIL_PRIMITIVE_CAT(UTIL_NOT_, x))
|
|
#define UTIL_NOT_0 ~, 1,
|
|
|
|
#define UTIL_COMPL(b) UTIL_PRIMITIVE_CAT(UTIL_COMPL_, b)
|
|
#define UTIL_COMPL_0 1
|
|
#define UTIL_COMPL_1 0
|
|
|
|
#define UTIL_BOOL(x) UTIL_COMPL(UTIL_NOT(x))
|
|
|
|
#define UTIL_IIF(c) UTIL_PRIMITIVE_CAT(UTIL_IIF_, c)
|
|
#define UTIL_IIF_0(t, ...) __VA_ARGS__
|
|
#define UTIL_IIF_1(t, ...) t
|
|
|
|
#define UTIL_IF(c) UTIL_IIF(UTIL_BOOL(c))
|
|
|
|
#define UTIL_EAT(...)
|
|
#define UTIL_EXPAND(...) __VA_ARGS__
|
|
#define UTIL_WHEN(c) UTIL_IF(c)(UTIL_EXPAND, UTIL_EAT)
|
|
|
|
#define UTIL_REPEAT(count, macro, ...) \
|
|
UTIL_WHEN(count) \
|
|
( \
|
|
UTIL_OBSTRUCT(UTIL_REPEAT_INDIRECT) () \
|
|
( \
|
|
UTIL_DEC(count), macro, __VA_ARGS__ \
|
|
) \
|
|
UTIL_OBSTRUCT(macro) \
|
|
( \
|
|
UTIL_DEC(count), __VA_ARGS__ \
|
|
) \
|
|
)
|
|
#define UTIL_REPEAT_INDIRECT() UTIL_REPEAT
|
|
|
|
/**
|
|
* Generates a sequence of code.
|
|
* Useful for generating code like;
|
|
*
|
|
* NRF_PWM0, NRF_PWM1, NRF_PWM2,
|
|
*
|
|
* @arg LEN: The length of the sequence. Must be defined and less than
|
|
* 20.
|
|
*
|
|
* @arg F(i, F_ARG): A macro function that accepts two arguments.
|
|
* F is called repeatedly, the first argument
|
|
* is the index in the sequence, and the second argument is the third
|
|
* argument given to UTIL_LISTIFY.
|
|
*
|
|
* Example:
|
|
*
|
|
* \#define FOO(i, _) NRF_PWM ## i ,
|
|
* { UTIL_LISTIFY(PWM_COUNT, FOO) }
|
|
* // The above two lines will generate the below:
|
|
* { NRF_PWM0 , NRF_PWM1 , }
|
|
*
|
|
* @note Calling UTIL_LISTIFY with undefined arguments has undefined
|
|
* behavior.
|
|
*/
|
|
#define UTIL_LISTIFY(LEN, F, F_ARG) UTIL_EVAL(UTIL_REPEAT(LEN, F, F_ARG))
|
|
|
|
#endif /* _UTIL__H_ */
|