zephyr/drivers/ethernet/phy/phy_qualcomm_ar8031.c

511 lines
13 KiB
C

/*
* Copyright 2024 NXP
*
* Inspiration from phy_mii.c, which is:
* Copyright (c) 2021 IP-Logix Inc.
* Copyright 2022 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT qca_ar8031
#include <errno.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <zephyr/kernel.h>
#include <zephyr/drivers/mdio.h>
#include <zephyr/net/phy.h>
#include <zephyr/net/mdio.h>
#include <zephyr/net/mii.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(phy_qc_ar8031, CONFIG_PHY_LOG_LEVEL);
#define AR8031_PHY_ID1 0x004DU
#define PHY_READID_TIMEOUT_COUNT 1000U
/* PHY Specific Status Register */
#define PHY_SPECIFIC_STATUS_REG 0x11
#define SPEC_STATUS_REG_LINK_MASK (1U << 10)
#define SPEC_STATUS_REG_DUPLEX_MASK (1U << 13)
#define PHY_DUPLEX_HALF (0U << 13)
#define PHY_DUPLEX_FULL (1U << 13)
#define SPEC_STATUS_REG_SPEED_MASK (0x3U << 14)
#define PHY_SPEED_10M (0U << 14)
#define PHY_SPEED_100M (1U << 14)
#define PHY_SPEED_1000M (2U << 14)
/* The PHY Debug port address register */
#define PHY_DEBUGPORT_ADDR_REG 0x1DU
/* The PHY Debug port data register */
#define PHY_DEBUGPORT_DATA_REG 0x1EU
/* PCS Register: smartEEE control 3 Register */
#define MDIO_PCS_SMARTEEE_CTRL3 0x805DU
#define MDIO_PCS_SMARTEEE_CTRL3_LPI_EN (1U << 8)
/* Debug port registers */
/* Analog Test Control */
#define PHY_DEBUGPORT_ANALOG_CTRL 0x0
#define PHY_DEBUGPORT_ANALOG_CTRL_RX_DELAY (1U << 15)
/* SerDes Test and System Mode Control */
#define PHY_DEBUGPORT_SD_SM_CTRL 0x5
#define PHY_DEBUGPORT_SD_SM_CTRL_TX_DELAY (1U << 8)
struct qc_ar8031_config {
uint8_t addr;
bool fixed_link;
bool enable_eee;
int fixed_speed;
const struct device *mdio_dev;
};
struct qc_ar8031_data {
const struct device *dev;
phy_callback_t cb;
void *cb_data;
struct k_work_delayable monitor_work;
struct phy_link_state state;
struct k_sem sem;
};
static int qc_ar8031_get_link_state(const struct device *dev, struct phy_link_state *state);
static int qc_ar8031_read(const struct device *dev, uint16_t reg_addr, uint32_t *data)
{
const struct qc_ar8031_config *config = dev->config;
int ret;
/* Make sure excessive bits 16-31 are reset */
*data = 0U;
/* Read the PHY register */
ret = mdio_read(config->mdio_dev, config->addr, reg_addr, (uint16_t *)data);
if (ret) {
return ret;
}
return 0;
}
static int qc_ar8031_write(const struct device *dev, uint16_t reg_addr, uint32_t data)
{
const struct qc_ar8031_config *config = dev->config;
int ret;
ret = mdio_write(config->mdio_dev, config->addr, reg_addr, (uint16_t)data);
if (ret) {
return ret;
}
return 0;
}
static int qc_ar8031_mmd_set_device(const struct device *dev, uint32_t device, uint32_t addr,
uint16_t mode)
{
uint16_t reg_value = (device & MII_MMD_ACR_DEVAD_MASK) | MII_MMD_ACR_ADDR;
if (qc_ar8031_write(dev, MII_MMD_ACR, reg_value) < 0) {
return -EIO;
}
if (qc_ar8031_write(dev, MII_MMD_AADR, addr) < 0) {
return -EIO;
}
/* Set Function mode of data access(b01~11) and device address. */
if (qc_ar8031_write(dev, MII_MMD_ACR, (device & MII_MMD_ACR_DEVAD_MASK) | mode) < 0) {
return -EIO;
}
return 0;
}
static int qc_ar8031_mmd_read(const struct device *dev, uint32_t device, uint32_t addr,
uint32_t *data)
{
int ret;
*data = 0U;
ret = qc_ar8031_mmd_set_device(dev, device, addr, MII_MMD_ACR_DATA_NO_POS_INC);
if (ret) {
return -EIO;
}
ret = qc_ar8031_read(dev, MII_MMD_AADR, data);
return ret;
}
static int qc_ar8031_mmd_write(const struct device *dev, uint32_t device, uint32_t addr,
uint32_t data)
{
int ret;
ret = qc_ar8031_mmd_set_device(dev, device, addr, MII_MMD_ACR_DATA_NO_POS_INC);
if (ret) {
return -EIO;
}
ret = qc_ar8031_write(dev, MII_MMD_AADR, data);
return ret;
}
static int qc_ar8031_update_link_state(const struct device *dev)
{
const struct qc_ar8031_config *const cfg = dev->config;
struct qc_ar8031_data *const data = dev->data;
bool link_up;
uint32_t reg_value;
uint16_t speed, duplex;
if (qc_ar8031_read(dev, PHY_SPECIFIC_STATUS_REG, &reg_value) < 0) {
return -EIO;
}
link_up = (uint16_t)reg_value & SPEC_STATUS_REG_LINK_MASK;
/* If there is no change in link state don't proceed. */
if (link_up == data->state.is_up) {
return -EAGAIN;
}
data->state.is_up = link_up;
/* If link is down, there is nothing more to be done */
if (data->state.is_up == false) {
return 0;
}
if (qc_ar8031_read(dev, PHY_SPECIFIC_STATUS_REG, &reg_value) < 0) {
return -EIO;
}
speed = reg_value & SPEC_STATUS_REG_SPEED_MASK;
duplex = reg_value & SPEC_STATUS_REG_DUPLEX_MASK;
switch (speed | duplex) {
case PHY_SPEED_10M | PHY_DUPLEX_FULL:
data->state.speed = LINK_FULL_10BASE_T;
break;
case PHY_SPEED_10M | PHY_DUPLEX_HALF:
data->state.speed = LINK_HALF_10BASE_T;
break;
case PHY_SPEED_100M | PHY_DUPLEX_FULL:
data->state.speed = LINK_FULL_100BASE_T;
break;
case PHY_SPEED_100M | PHY_DUPLEX_HALF:
data->state.speed = LINK_HALF_100BASE_T;
break;
case PHY_SPEED_1000M | PHY_DUPLEX_FULL:
data->state.speed = LINK_FULL_1000BASE_T;
break;
case PHY_SPEED_1000M | PHY_DUPLEX_HALF:
data->state.speed = LINK_HALF_1000BASE_T;
break;
}
LOG_DBG("PHY (%d) Link speed %s Mb, %s duplex", cfg->addr,
PHY_LINK_IS_SPEED_1000M(data->state.speed)
? "1000"
: (PHY_LINK_IS_SPEED_100M(data->state.speed) ? "100" : "10"),
PHY_LINK_IS_FULL_DUPLEX(data->state.speed) ? "full" : "half");
return 0;
}
static void invoke_link_cb(const struct device *dev)
{
struct qc_ar8031_data *const data = dev->data;
struct phy_link_state state;
if (data->cb == NULL) {
return;
}
qc_ar8031_get_link_state(dev, &state);
data->cb(data->dev, &state, data->cb_data);
}
static void monitor_work_handler(struct k_work *work)
{
struct k_work_delayable *dwork = k_work_delayable_from_work(work);
struct qc_ar8031_data *const data =
CONTAINER_OF(dwork, struct qc_ar8031_data, monitor_work);
const struct device *dev = data->dev;
int rc;
k_sem_take(&data->sem, K_FOREVER);
rc = qc_ar8031_update_link_state(dev);
k_sem_give(&data->sem);
/* If link state has changed and a callback is set, invoke callback */
if (rc == 0) {
invoke_link_cb(dev);
}
/* Submit delayed work */
k_work_reschedule(&data->monitor_work, K_MSEC(CONFIG_PHY_MONITOR_PERIOD));
}
static int qc_ar8031_cfg_link(const struct device *dev, enum phy_link_speed adv_speeds)
{
uint32_t anar_reg;
uint32_t bmcr_reg;
uint32_t c1kt_reg;
if (qc_ar8031_read(dev, MII_ANAR, &anar_reg) < 0) {
return -EIO;
}
if (qc_ar8031_read(dev, MII_BMCR, &bmcr_reg) < 0) {
return -EIO;
}
if (qc_ar8031_read(dev, MII_1KTCR, &c1kt_reg) < 0) {
return -EIO;
}
if (adv_speeds & LINK_FULL_10BASE_T) {
anar_reg |= MII_ADVERTISE_10_FULL;
} else {
anar_reg &= ~MII_ADVERTISE_10_FULL;
}
if (adv_speeds & LINK_HALF_10BASE_T) {
anar_reg |= MII_ADVERTISE_10_HALF;
} else {
anar_reg &= ~MII_ADVERTISE_10_HALF;
}
if (adv_speeds & LINK_FULL_100BASE_T) {
anar_reg |= MII_ADVERTISE_100_FULL;
} else {
anar_reg &= ~MII_ADVERTISE_100_FULL;
}
if (adv_speeds & LINK_HALF_100BASE_T) {
anar_reg |= MII_ADVERTISE_100_HALF;
} else {
anar_reg &= ~MII_ADVERTISE_100_HALF;
}
if (adv_speeds & LINK_FULL_1000BASE_T) {
c1kt_reg |= MII_ADVERTISE_1000_FULL;
} else {
c1kt_reg &= ~MII_ADVERTISE_1000_FULL;
}
if (adv_speeds & LINK_HALF_1000BASE_T) {
c1kt_reg |= MII_ADVERTISE_1000_HALF;
} else {
c1kt_reg &= ~MII_ADVERTISE_1000_HALF;
}
if (qc_ar8031_write(dev, MII_1KTCR, c1kt_reg) < 0) {
return -EIO;
}
bmcr_reg |= MII_BMCR_AUTONEG_ENABLE | MII_BMCR_AUTONEG_RESTART;
if (qc_ar8031_write(dev, MII_ANAR, anar_reg) < 0) {
return -EIO;
}
if (qc_ar8031_write(dev, MII_BMCR, bmcr_reg) < 0) {
return -EIO;
}
return 0;
}
static int qc_ar8031_get_link_state(const struct device *dev, struct phy_link_state *state)
{
struct qc_ar8031_data *const data = dev->data;
k_sem_take(&data->sem, K_FOREVER);
memcpy(state, &data->state, sizeof(struct phy_link_state));
k_sem_give(&data->sem);
return 0;
}
static int qc_ar8031_link_cb_set(const struct device *dev, phy_callback_t cb, void *user_data)
{
struct qc_ar8031_data *const data = dev->data;
data->cb = cb;
data->cb_data = user_data;
/**
* Immediately invoke the callback to notify the caller of the
* current link status.
*/
invoke_link_cb(dev);
return 0;
}
static int qc_ar8031_init(const struct device *dev)
{
const struct qc_ar8031_config *const cfg = dev->config;
struct qc_ar8031_data *const data = dev->data;
uint32_t counter = PHY_READID_TIMEOUT_COUNT;
uint32_t reg_value = 0;
int ret;
k_sem_init(&data->sem, 1, 1);
mdio_bus_enable(cfg->mdio_dev);
data->state.is_up = false;
data->dev = dev;
data->cb = NULL;
do {
if (qc_ar8031_read(dev, MII_PHYID1R, &reg_value) < 0) {
return -EIO;
}
} while (reg_value != AR8031_PHY_ID1 && counter-- > 0);
if (counter == 0U) {
LOG_ERR("PHY (%d) can't read ID", cfg->addr);
return -EIO;
}
/* Reset PHY */
ret = qc_ar8031_write(dev, MII_BMCR, MII_BMCR_RESET);
if (ret) {
return -EIO;
}
/* Close smartEEE */
ret = qc_ar8031_mmd_set_device(dev, MDIO_MMD_PCS, MDIO_PCS_SMARTEEE_CTRL3,
MII_MMD_ACR_DATA_NO_POS_INC);
if (ret) {
return -EIO;
}
ret = qc_ar8031_read(dev, MII_MMD_AADR, &reg_value);
if (ret) {
return -EIO;
}
ret = qc_ar8031_write(dev, MII_MMD_AADR, reg_value & ~(MDIO_PCS_SMARTEEE_CTRL3_LPI_EN));
if (ret) {
return -EIO;
}
/* Enable Tx clock delay */
ret = qc_ar8031_write(dev, PHY_DEBUGPORT_ADDR_REG, PHY_DEBUGPORT_SD_SM_CTRL);
if (ret) {
return -EIO;
}
ret = qc_ar8031_read(dev, PHY_DEBUGPORT_DATA_REG, &reg_value);
if (ret) {
return -EIO;
}
ret = qc_ar8031_write(dev, PHY_DEBUGPORT_DATA_REG,
reg_value | PHY_DEBUGPORT_SD_SM_CTRL_TX_DELAY);
if (ret) {
return -EIO;
}
/* Enable Rx clock delay */
ret = qc_ar8031_write(dev, PHY_DEBUGPORT_ADDR_REG, PHY_DEBUGPORT_ANALOG_CTRL);
if (ret) {
return -EIO;
}
ret = qc_ar8031_read(dev, PHY_DEBUGPORT_DATA_REG, &reg_value);
if (ret) {
return -EIO;
}
ret = qc_ar8031_write(dev, PHY_DEBUGPORT_DATA_REG,
reg_value | PHY_DEBUGPORT_ANALOG_CTRL_RX_DELAY);
if (ret) {
return -EIO;
}
/* Energy Efficient Ethernet configuration */
if (cfg->enable_eee) {
ret = qc_ar8031_mmd_read(dev, MDIO_MMD_PCS, MDIO_PCS_EEE_CAP, &reg_value);
if (ret) {
return -EIO;
}
ret = qc_ar8031_mmd_write(dev, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
reg_value & (MDIO_AN_EEE_ADV_1000T | MDIO_AN_EEE_ADV_100TX));
if (ret) {
return -EIO;
}
} else {
ret = qc_ar8031_mmd_write(dev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 0);
if (ret) {
return -EIO;
}
}
/* Fixed Link */
if (cfg->fixed_link) {
/* Disable isolate */
ret = qc_ar8031_read(dev, MII_BMCR, &reg_value);
if (ret) {
return -EIO;
}
reg_value &= ~MII_BMCR_ISOLATE;
ret = qc_ar8031_write(dev, MII_BMCR, reg_value);
if (ret) {
return -EIO;
}
const static int speed_to_phy_link_speed[] = {
LINK_HALF_10BASE_T, LINK_FULL_10BASE_T, LINK_HALF_100BASE_T,
LINK_FULL_100BASE_T, LINK_HALF_1000BASE_T, LINK_FULL_1000BASE_T,
};
data->state.speed = speed_to_phy_link_speed[cfg->fixed_speed];
data->state.is_up = true;
} else { /* Auto negotiation */
/* Advertise all speeds */
qc_ar8031_cfg_link(dev, LINK_HALF_10BASE_T | LINK_FULL_10BASE_T |
LINK_HALF_100BASE_T | LINK_FULL_100BASE_T |
LINK_HALF_1000BASE_T | LINK_FULL_1000BASE_T);
k_work_init_delayable(&data->monitor_work, monitor_work_handler);
monitor_work_handler(&data->monitor_work.work);
}
return 0;
}
static const struct ethphy_driver_api ar8031_driver_api = {
.get_link = qc_ar8031_get_link_state,
.cfg_link = qc_ar8031_cfg_link,
.link_cb_set = qc_ar8031_link_cb_set,
.read = qc_ar8031_read,
.write = qc_ar8031_write,
};
#define AR8031_CONFIG(n) \
static const struct qc_ar8031_config qc_ar8031_config_##n = { \
.addr = DT_INST_REG_ADDR(n), \
.fixed_link = DT_INST_NODE_HAS_PROP(n, fixed_link), \
.fixed_speed = DT_INST_ENUM_IDX_OR(n, fixed_link, 0), \
.mdio_dev = DEVICE_DT_GET(DT_INST_BUS(n)), \
.enable_eee = DT_INST_NODE_HAS_PROP(n, eee_en), \
};
#define AR8031_DEVICE(n) \
AR8031_CONFIG(n); \
static struct qc_ar8031_data qc_ar8031_data_##n; \
DEVICE_DT_INST_DEFINE(n, &qc_ar8031_init, NULL, &qc_ar8031_data_##n, \
&qc_ar8031_config_##n, POST_KERNEL, CONFIG_PHY_INIT_PRIORITY, \
&ar8031_driver_api);
DT_INST_FOREACH_STATUS_OKAY(AR8031_DEVICE)