zephyr/drivers/dma/dma_mcux_lpc.c

927 lines
27 KiB
C

/*
* Copyright (c) 2020-2023 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @brief Common part of DMA drivers for some NXP SoC.
*/
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <soc.h>
#include <zephyr/drivers/dma.h>
#include <fsl_dma.h>
#include <fsl_inputmux.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
#include <zephyr/sys/barrier.h>
#include <zephyr/sys/util.h>
#include <zephyr/sys/util_macro.h>
#include <zephyr/drivers/dma/dma_mcux_lpc.h>
#define DT_DRV_COMPAT nxp_lpc_dma
LOG_MODULE_REGISTER(dma_mcux_lpc, CONFIG_DMA_LOG_LEVEL);
struct dma_mcux_lpc_config {
DMA_Type *base;
uint32_t otrig_base_address;
uint32_t itrig_base_address;
uint8_t num_of_channels;
uint8_t num_of_otrigs;
void (*irq_config_func)(const struct device *dev);
};
struct channel_data {
SDK_ALIGN(dma_descriptor_t dma_descriptor_table[CONFIG_DMA_MCUX_LPC_NUMBER_OF_DESCRIPTORS],
FSL_FEATURE_DMA_LINK_DESCRIPTOR_ALIGN_SIZE);
dma_handle_t dma_handle;
const struct device *dev;
void *user_data;
dma_callback_t dma_callback;
enum dma_channel_direction dir;
uint8_t src_inc;
uint8_t dst_inc;
dma_descriptor_t *curr_descriptor;
uint8_t num_of_descriptors;
bool descriptors_queued;
uint32_t width;
bool busy;
};
struct dma_otrig {
int8_t source_channel;
int8_t linked_channel;
};
struct dma_mcux_lpc_dma_data {
struct channel_data *channel_data;
struct dma_otrig *otrig_array;
int8_t *channel_index;
uint8_t num_channels_used;
};
struct k_spinlock configuring_otrigs;
#define NXP_LPC_DMA_MAX_XFER ((DMA_CHANNEL_XFERCFG_XFERCOUNT_MASK >> \
DMA_CHANNEL_XFERCFG_XFERCOUNT_SHIFT) + 1)
#define DEV_BASE(dev) \
((DMA_Type *)((const struct dma_mcux_lpc_config *const)(dev)->config)->base)
#define DEV_CHANNEL_DATA(dev, ch) \
((struct channel_data *)(&(((struct dma_mcux_lpc_dma_data *)dev->data)->channel_data[ch])))
#define DEV_DMA_HANDLE(dev, ch) \
((dma_handle_t *)(&(DEV_CHANNEL_DATA(dev, ch)->dma_handle)))
#define EMPTY_OTRIG -1
static void nxp_lpc_dma_callback(dma_handle_t *handle, void *param,
bool transferDone, uint32_t intmode)
{
int ret = -EIO;
struct channel_data *data = (struct channel_data *)param;
uint32_t channel = handle->channel;
if (intmode == kDMA_IntError) {
DMA_AbortTransfer(handle);
} else if (intmode == kDMA_IntA) {
ret = DMA_STATUS_BLOCK;
} else {
ret = DMA_STATUS_COMPLETE;
}
data->busy = DMA_ChannelIsBusy(data->dma_handle.base, channel);
if (data->dma_callback) {
data->dma_callback(data->dev, data->user_data, channel, ret);
}
}
/* Handles DMA interrupts and dispatches to the individual channel */
static void dma_mcux_lpc_irq_handler(const struct device *dev)
{
DMA_IRQHandle(DEV_BASE(dev));
/*
* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store
* immediate overlapping exception return operation might vector
* to incorrect interrupt
*/
#if defined __CORTEX_M && (__CORTEX_M == 4U)
barrier_dsync_fence_full();
#endif
}
#ifdef CONFIG_SOC_SERIES_RW6XX
static inline void rw6xx_dma_addr_fixup(struct dma_block_config *block)
{
/* RW6xx AHB design does not route DMA engine through FlexSPI CACHE.
* Therefore, to use DMA from the FlexSPI space we must adjust the
* source address to use the non cached FlexSPI region.
* FlexSPI cached region is at 0x800_0000 (nonsecure) or 0x1800_0000
* (secure). We move the address into non cached region, which is at
* 0x4800_0000 or 0x5800_000.
*/
if (((block->source_address & 0xF8000000) == 0x18000000) ||
((block->source_address & 0xF8000000) == 0x8000000)) {
block->source_address = block->source_address + 0x40000000;
}
if (((block->dest_address & 0xF8000000) == 0x18000000) ||
((block->dest_address & 0xF8000000) == 0x8000000)) {
block->dest_address = block->dest_address + 0x40000000;
}
}
#endif
static int dma_mcux_lpc_queue_descriptors(struct channel_data *data,
struct dma_block_config *block,
uint8_t src_inc,
uint8_t dest_inc,
bool callback_en)
{
uint32_t xfer_config = 0U;
dma_descriptor_t *next_descriptor = NULL;
uint32_t width = data->width;
uint32_t max_xfer_bytes = NXP_LPC_DMA_MAX_XFER * width;
bool setup_extra_descriptor = false;
/* intA is used to indicate transfer of a block */
uint8_t enable_a_interrupt;
/* intB is used to indicate complete transfer of the list of blocks */
uint8_t enable_b_interrupt;
uint8_t reload;
struct dma_block_config local_block;
bool last_block = false;
memcpy(&local_block, block, sizeof(struct dma_block_config));
do {
/* Descriptors are queued during dma_configure, do not add more
* during dma_reload.
*/
if (!data->descriptors_queued) {
/* Increase the number of descriptors queued */
data->num_of_descriptors++;
if (data->num_of_descriptors >= CONFIG_DMA_MCUX_LPC_NUMBER_OF_DESCRIPTORS) {
return -ENOMEM;
}
/* Do we need to queue additional DMA descriptors for this block */
if ((local_block.block_size > max_xfer_bytes) ||
(local_block.next_block != NULL)) {
/* Allocate DMA descriptors */
next_descriptor =
&data->dma_descriptor_table[data->num_of_descriptors];
} else {
/* Check if this is the last block to transfer */
if (local_block.next_block == NULL) {
last_block = true;
/* Last descriptor, check if we should setup a
* circular chain
*/
if (!local_block.source_reload_en) {
/* No more descriptors */
next_descriptor = NULL;
} else if (data->num_of_descriptors == 1) {
/* Allocate one more descriptors for
* ping-pong transfer
*/
next_descriptor = &data->dma_descriptor_table[
data->num_of_descriptors];
setup_extra_descriptor = true;
} else {
/* Loop back to the head */
next_descriptor = data->dma_descriptor_table;
}
}
}
} else {
/* Descriptors have already been allocated, reuse them as this
* is called from a reload function
*/
next_descriptor = data->curr_descriptor->linkToNextDesc;
}
/* SPI TX transfers need to queue a DMA descriptor to
* indicate an end of transfer. Source or destination
* address does not need to be change for these
* transactions and the transfer width is 4 bytes
*/
if ((local_block.source_addr_adj == DMA_ADDR_ADJ_NO_CHANGE) &&
(local_block.dest_addr_adj == DMA_ADDR_ADJ_NO_CHANGE)) {
src_inc = 0;
dest_inc = 0;
width = sizeof(uint32_t);
}
/* Fire an interrupt after the whole block has been transferred */
if (local_block.block_size > max_xfer_bytes) {
enable_a_interrupt = 0;
enable_b_interrupt = 0;
} else {
/* Use intB when this is the end of the block list and transfer */
if (last_block) {
enable_a_interrupt = 0;
enable_b_interrupt = 1;
} else {
/* Use intA when we need an interrupt per block
* Enable or disable intA based on user configuration
*/
enable_a_interrupt = callback_en;
enable_b_interrupt = 0;
}
}
/* Reload if we have more descriptors */
if (next_descriptor) {
reload = 1;
} else {
reload = 0;
}
/* Enable interrupt and reload for the descriptor */
xfer_config = DMA_CHANNEL_XFER(reload, 0UL, enable_a_interrupt,
enable_b_interrupt,
width,
src_inc,
dest_inc,
MIN(local_block.block_size, max_xfer_bytes));
#ifdef CONFIG_SOC_SERIES_RW6XX
rw6xx_dma_addr_fixup(&local_block);
#endif
DMA_SetupDescriptor(data->curr_descriptor,
xfer_config,
(void *)local_block.source_address,
(void *)local_block.dest_address,
(void *)next_descriptor);
data->curr_descriptor = next_descriptor;
if (local_block.block_size > max_xfer_bytes) {
local_block.block_size -= max_xfer_bytes;
if (src_inc) {
local_block.source_address += max_xfer_bytes;
}
if (dest_inc) {
local_block.dest_address += max_xfer_bytes;
}
} else {
local_block.block_size = 0;
}
} while (local_block.block_size > 0);
/* If an additional descriptor is queued for a certain case, set it up here.
*/
if (setup_extra_descriptor) {
/* Increase the number of descriptors queued */
data->num_of_descriptors++;
/* Loop back to the head */
next_descriptor = data->dma_descriptor_table;
/* Leave curr pointer unchanged so we start queuing new data from
* this descriptor
*/
/* Enable or disable interrupt based on user request.
* Reload for the descriptor.
*/
xfer_config = DMA_CHANNEL_XFER(1UL, 0UL, callback_en, 0U,
width,
src_inc,
dest_inc,
MIN(local_block.block_size, max_xfer_bytes));
/* Mark this as invalid */
xfer_config &= ~DMA_CHANNEL_XFERCFG_CFGVALID_MASK;
#ifdef CONFIG_SOC_SERIES_RW6XX
rw6xx_dma_addr_fixup(&local_block);
#endif
DMA_SetupDescriptor(data->curr_descriptor,
xfer_config,
(void *)local_block.source_address,
(void *)local_block.dest_address,
(void *)next_descriptor);
}
return 0;
}
static void dma_mcux_lpc_clear_channel_data(struct channel_data *data)
{
data->dma_callback = NULL;
data->dir = 0;
data->src_inc = 0;
data->dst_inc = 0;
data->descriptors_queued = false;
data->num_of_descriptors = 0;
data->curr_descriptor = NULL;
data->width = 0;
}
/* Configure a channel */
static int dma_mcux_lpc_configure(const struct device *dev, uint32_t channel,
struct dma_config *config)
{
const struct dma_mcux_lpc_config *dev_config;
dma_handle_t *p_handle;
uint32_t xfer_config = 0U;
struct channel_data *data;
struct dma_mcux_lpc_dma_data *dma_data;
struct dma_block_config *block_config;
uint32_t virtual_channel;
uint8_t otrig_index;
uint8_t src_inc = 1, dst_inc = 1;
bool is_periph = true;
uint8_t width;
uint32_t max_xfer_bytes;
uint8_t reload = 0;
bool complete_callback;
if (NULL == dev || NULL == config) {
return -EINVAL;
}
dev_config = dev->config;
dma_data = dev->data;
block_config = config->head_block;
/* The DMA controller deals with just one transfer
* size, though the API provides separate sizes
* for source and dest. So assert that the source
* and dest sizes are the same.
*/
assert(config->dest_data_size == config->source_data_size);
width = config->dest_data_size;
/* If skip is set on both source and destination
* then skip by the same amount on both sides
*/
if (block_config->source_gather_en && block_config->dest_scatter_en) {
assert(block_config->source_gather_interval ==
block_config->dest_scatter_interval);
}
max_xfer_bytes = NXP_LPC_DMA_MAX_XFER * width;
/*
* Check if circular mode is requested.
*/
if (config->head_block->source_reload_en ||
config->head_block->dest_reload_en) {
reload = 1;
}
/* Check if have a free slot to store DMA channel data */
if (dma_data->num_channels_used > dev_config->num_of_channels) {
LOG_ERR("out of DMA channel %d", channel);
return -EINVAL;
}
/* Check if the dma channel number is valid */
if (channel >= dev_config->num_of_channels) {
LOG_ERR("invalid DMA channel number %d", channel);
return -EINVAL;
}
if (config->source_data_size != 4U &&
config->source_data_size != 2U &&
config->source_data_size != 1U) {
LOG_ERR("Source unit size error, %d", config->source_data_size);
return -EINVAL;
}
if (config->dest_data_size != 4U &&
config->dest_data_size != 2U &&
config->dest_data_size != 1U) {
LOG_ERR("Dest unit size error, %d", config->dest_data_size);
return -EINVAL;
}
switch (config->channel_direction) {
case MEMORY_TO_MEMORY:
is_periph = false;
if (block_config->source_gather_en) {
src_inc = block_config->source_gather_interval / width;
/* The current controller only supports incrementing the
* source and destination up to 4 time transfer width
*/
if ((src_inc > 4) || (src_inc == 3)) {
return -EINVAL;
}
}
if (block_config->dest_scatter_en) {
dst_inc = block_config->dest_scatter_interval / width;
/* The current controller only supports incrementing the
* source and destination up to 4 time transfer width
*/
if ((dst_inc > 4) || (dst_inc == 3)) {
return -EINVAL;
}
}
break;
case MEMORY_TO_PERIPHERAL:
/* Set the source increment value */
if (block_config->source_gather_en) {
src_inc = block_config->source_gather_interval / width;
/* The current controller only supports incrementing the
* source and destination up to 4 time transfer width
*/
if ((src_inc > 4) || (src_inc == 3)) {
return -EINVAL;
}
}
dst_inc = 0;
break;
case PERIPHERAL_TO_MEMORY:
src_inc = 0;
/* Set the destination increment value */
if (block_config->dest_scatter_en) {
dst_inc = block_config->dest_scatter_interval / width;
/* The current controller only supports incrementing the
* source and destination up to 4 time transfer width
*/
if ((dst_inc > 4) || (dst_inc == 3)) {
return -EINVAL;
}
}
break;
default:
LOG_ERR("not support transfer direction");
return -EINVAL;
}
/* Check if user does not want to increment address */
if (block_config->source_addr_adj == DMA_ADDR_ADJ_NO_CHANGE) {
src_inc = 0;
}
if (block_config->dest_addr_adj == DMA_ADDR_ADJ_NO_CHANGE) {
dst_inc = 0;
}
/* If needed, allocate a slot to store dma channel data */
if (dma_data->channel_index[channel] == -1) {
dma_data->channel_index[channel] = dma_data->num_channels_used;
dma_data->num_channels_used++;
/* Get the slot number that has the dma channel data */
virtual_channel = dma_data->channel_index[channel];
/* dma channel data */
p_handle = DEV_DMA_HANDLE(dev, virtual_channel);
data = DEV_CHANNEL_DATA(dev, virtual_channel);
DMA_CreateHandle(p_handle, DEV_BASE(dev), channel);
DMA_SetCallback(p_handle, nxp_lpc_dma_callback, (void *)data);
} else {
/* Get the slot number that has the dma channel data */
virtual_channel = dma_data->channel_index[channel];
/* dma channel data */
p_handle = DEV_DMA_HANDLE(dev, virtual_channel);
data = DEV_CHANNEL_DATA(dev, virtual_channel);
}
dma_mcux_lpc_clear_channel_data(data);
data->dir = config->channel_direction;
/* Save the increment values for the reload function */
data->src_inc = src_inc;
data->dst_inc = dst_inc;
if (data->busy) {
DMA_AbortTransfer(p_handle);
}
LOG_DBG("channel is %d", p_handle->channel);
k_spinlock_key_t otrigs_key = k_spin_lock(&configuring_otrigs);
data->width = width;
if (config->source_chaining_en || config->dest_chaining_en) {
/* Chaining is enabled */
if (!dev_config->otrig_base_address || !dev_config->itrig_base_address) {
LOG_ERR("Calling function tried to setup up channel"
" chaining but the current platform is missing"
" the correct trigger base addresses.");
k_spin_unlock(&configuring_otrigs, otrigs_key);
return -ENXIO;
}
LOG_DBG("link dma 0 channel %d with channel %d",
channel, config->linked_channel);
uint8_t is_otrig_available = 0;
for (otrig_index = 0; otrig_index < dev_config->num_of_otrigs;
++otrig_index) {
if (dma_data->otrig_array[otrig_index].linked_channel == EMPTY_OTRIG ||
dma_data->otrig_array[otrig_index].source_channel == channel) {
if (dma_data->otrig_array[otrig_index].source_channel == channel) {
int ChannelToDisable =
dma_data->otrig_array[otrig_index].linked_channel;
DMA_DisableChannel(DEV_BASE(dev), ChannelToDisable);
DEV_BASE(dev)->CHANNEL[ChannelToDisable].CFG &=
~DMA_CHANNEL_CFG_HWTRIGEN_MASK;
}
is_otrig_available = 1;
break;
}
}
if (!is_otrig_available) {
LOG_ERR("Calling function tried to setup up multiple"
" channels to be configured but the dma driver has"
" run out of OTrig Muxes");
k_spin_unlock(&configuring_otrigs, otrigs_key);
return -EINVAL;
}
/* Since INPUTMUX handles the dma signals and
* must be hardware triggered via the INPUTMUX
* hardware.
*/
DEV_BASE(dev)->CHANNEL[config->linked_channel].CFG |=
DMA_CHANNEL_CFG_HWTRIGEN_MASK;
DMA_EnableChannel(DEV_BASE(dev), config->linked_channel);
/* Link OTrig Muxes with passed-in channels */
INPUTMUX_AttachSignal(INPUTMUX, otrig_index,
dev_config->otrig_base_address + channel);
INPUTMUX_AttachSignal(INPUTMUX, config->linked_channel,
dev_config->itrig_base_address + otrig_index);
/* Otrig is now connected with linked channel */
dma_data->otrig_array[otrig_index].source_channel = channel;
dma_data->otrig_array[otrig_index].linked_channel = config->linked_channel;
} else {
/* Chaining is _NOT_ enabled, Freeing connected OTrig */
for (otrig_index = 0; otrig_index < dev_config->num_of_otrigs; otrig_index++) {
if (dma_data->otrig_array[otrig_index].linked_channel != EMPTY_OTRIG &&
(channel == dma_data->otrig_array[otrig_index].source_channel)) {
int ChannelToDisable =
dma_data->otrig_array[otrig_index].linked_channel;
DMA_DisableChannel(DEV_BASE(dev), ChannelToDisable);
DEV_BASE(dev)->CHANNEL[ChannelToDisable].CFG &=
~DMA_CHANNEL_CFG_HWTRIGEN_MASK;
dma_data->otrig_array[otrig_index].linked_channel = EMPTY_OTRIG;
dma_data->otrig_array[otrig_index].source_channel = EMPTY_OTRIG;
break;
}
}
}
k_spin_unlock(&configuring_otrigs, otrigs_key);
complete_callback = config->complete_callback_en;
/* Check if we need to queue DMA descriptors */
if ((block_config->block_size > max_xfer_bytes) ||
(block_config->next_block != NULL)) {
/* Allocate a DMA descriptor */
data->curr_descriptor = data->dma_descriptor_table;
if (block_config->block_size > max_xfer_bytes) {
/* Disable interrupt as this is not the entire data.
* Reload for the descriptor
*/
xfer_config = DMA_CHANNEL_XFER(1UL, 0UL, 0UL, 0UL,
width,
src_inc,
dst_inc,
max_xfer_bytes);
} else {
/* Enable INTA interrupt if user requested DMA for each block.
* Reload for the descriptor.
*/
xfer_config = DMA_CHANNEL_XFER(1UL, 0UL, complete_callback, 0UL,
width,
src_inc,
dst_inc,
block_config->block_size);
}
} else {
/* Enable interrupt for the descriptor */
xfer_config = DMA_CHANNEL_XFER(0UL, 0UL, 1UL, 0UL,
width,
src_inc,
dst_inc,
block_config->block_size);
}
/* DMA controller requires that the address be aligned to transfer size */
assert(block_config->source_address == ROUND_UP(block_config->source_address, width));
assert(block_config->dest_address == ROUND_UP(block_config->dest_address, width));
#ifdef CONFIG_SOC_SERIES_RW6XX
rw6xx_dma_addr_fixup(block_config);
#endif
DMA_SubmitChannelTransferParameter(p_handle,
xfer_config,
(void *)block_config->source_address,
(void *)block_config->dest_address,
(void *)data->curr_descriptor);
/* Start queuing DMA descriptors */
if (data->curr_descriptor) {
if (block_config->block_size > max_xfer_bytes) {
/* Queue additional DMA descriptors because the amount of data to
* be transferred is greater that the DMA descriptors max XFERCOUNT.
*/
struct dma_block_config local_block = { 0 };
if (src_inc) {
local_block.source_address = block_config->source_address
+ max_xfer_bytes;
} else {
local_block.source_address = block_config->source_address;
}
if (dst_inc) {
local_block.dest_address = block_config->dest_address
+ max_xfer_bytes;
} else {
local_block.dest_address = block_config->dest_address;
}
local_block.block_size = block_config->block_size - max_xfer_bytes;
local_block.next_block = block_config->next_block;
local_block.source_reload_en = reload;
if (block_config->next_block == NULL) {
/* This is the last block, enable callback. */
complete_callback = true;
}
if (dma_mcux_lpc_queue_descriptors(data, &local_block,
src_inc, dst_inc, complete_callback)) {
return -ENOMEM;
}
}
/* Get the next block to transfer */
block_config = block_config->next_block;
while (block_config != NULL) {
block_config->source_reload_en = reload;
/* DMA controller requires that the address be aligned to transfer size */
assert(block_config->source_address ==
ROUND_UP(block_config->source_address, width));
assert(block_config->dest_address ==
ROUND_UP(block_config->dest_address, width));
if (block_config->next_block == NULL) {
/* This is the last block. Enable callback if not enabled. */
complete_callback = true;
}
if (dma_mcux_lpc_queue_descriptors(data, block_config,
src_inc, dst_inc, complete_callback)) {
return -ENOMEM;
}
/* Get the next block and start queuing descriptors */
block_config = block_config->next_block;
}
/* We have finished queuing DMA descriptors */
data->descriptors_queued = true;
}
if (config->dma_slot) {
uint32_t cfg_reg = 0;
/* User supplied manual trigger configuration */
if (config->dma_slot & LPC_DMA_PERIPH_REQ_EN) {
cfg_reg |= DMA_CHANNEL_CFG_PERIPHREQEN_MASK;
}
if (config->dma_slot & LPC_DMA_HWTRIG_EN) {
/* Setup hardware trigger */
cfg_reg |= DMA_CHANNEL_CFG_HWTRIGEN_MASK;
if (config->dma_slot & LPC_DMA_TRIGTYPE_LEVEL) {
cfg_reg |= DMA_CHANNEL_CFG_TRIGTYPE_MASK;
}
if (config->dma_slot & LPC_DMA_TRIGPOL_HIGH_RISING) {
cfg_reg |= DMA_CHANNEL_CFG_TRIGPOL_MASK;
}
if (config->dma_slot & LPC_DMA_TRIGBURST) {
cfg_reg |= DMA_CHANNEL_CFG_TRIGBURST_MASK;
cfg_reg |= DMA_CHANNEL_CFG_BURSTPOWER(
LPC_DMA_GET_BURSTPOWER(config->dma_slot));
}
}
p_handle->base->CHANNEL[p_handle->channel].CFG = cfg_reg;
} else if (is_periph) {
DMA_EnableChannelPeriphRq(p_handle->base, p_handle->channel);
} else {
DMA_DisableChannelPeriphRq(p_handle->base, p_handle->channel);
}
DMA_SetChannelPriority(p_handle->base, p_handle->channel, config->channel_priority);
data->busy = false;
if (config->dma_callback) {
LOG_DBG("INSTALL call back on channel %d", channel);
data->user_data = config->user_data;
data->dma_callback = config->dma_callback;
data->dev = dev;
}
return 0;
}
static int dma_mcux_lpc_start(const struct device *dev, uint32_t channel)
{
struct dma_mcux_lpc_dma_data *dev_data = dev->data;
int8_t virtual_channel = dev_data->channel_index[channel];
struct channel_data *data = DEV_CHANNEL_DATA(dev, virtual_channel);
LOG_DBG("START TRANSFER");
LOG_DBG("DMA CTRL 0x%x", DEV_BASE(dev)->CTRL);
data->busy = true;
DMA_StartTransfer(DEV_DMA_HANDLE(dev, virtual_channel));
return 0;
}
static int dma_mcux_lpc_stop(const struct device *dev, uint32_t channel)
{
struct dma_mcux_lpc_dma_data *dev_data = dev->data;
int8_t virtual_channel = dev_data->channel_index[channel];
struct channel_data *data = DEV_CHANNEL_DATA(dev, virtual_channel);
if (!data->busy) {
return 0;
}
DMA_AbortTransfer(DEV_DMA_HANDLE(dev, virtual_channel));
DMA_DisableChannel(DEV_BASE(dev), channel);
data->busy = false;
return 0;
}
static int dma_mcux_lpc_reload(const struct device *dev, uint32_t channel,
uint32_t src, uint32_t dst, size_t size)
{
struct dma_mcux_lpc_dma_data *dev_data = dev->data;
int8_t virtual_channel = dev_data->channel_index[channel];
struct channel_data *data = DEV_CHANNEL_DATA(dev, virtual_channel);
uint32_t xfer_config = 0U;
/* DMA controller requires that the address be aligned to transfer size */
assert(src == ROUND_UP(src, data->width));
assert(dst == ROUND_UP(dst, data->width));
if (!data->descriptors_queued) {
dma_handle_t *p_handle;
p_handle = DEV_DMA_HANDLE(dev, virtual_channel);
/* Only one buffer, enable interrupt */
xfer_config = DMA_CHANNEL_XFER(0UL, 0UL, 1UL, 0UL,
data->width,
data->src_inc,
data->dst_inc,
size);
DMA_SubmitChannelTransferParameter(p_handle,
xfer_config,
(void *)src,
(void *)dst,
NULL);
} else {
struct dma_block_config local_block = { 0 };
local_block.source_address = src;
local_block.dest_address = dst;
local_block.block_size = size;
local_block.source_reload_en = 1;
dma_mcux_lpc_queue_descriptors(data, &local_block,
data->src_inc, data->dst_inc, true);
}
return 0;
}
static int dma_mcux_lpc_get_status(const struct device *dev, uint32_t channel,
struct dma_status *status)
{
const struct dma_mcux_lpc_config *config = dev->config;
struct dma_mcux_lpc_dma_data *dev_data = dev->data;
int8_t virtual_channel = dev_data->channel_index[channel];
struct channel_data *data = DEV_CHANNEL_DATA(dev, virtual_channel);
if (channel > config->num_of_channels) {
return -EINVAL;
}
/* If channel is actually busy or the virtual channel is just not set up */
if (data->busy && (virtual_channel != -1)) {
status->busy = true;
status->pending_length = DMA_GetRemainingBytes(DEV_BASE(dev), channel);
} else {
status->busy = false;
status->pending_length = 0;
}
status->dir = data->dir;
LOG_DBG("DMA CR 0x%x", DEV_BASE(dev)->CTRL);
LOG_DBG("DMA INT 0x%x", DEV_BASE(dev)->INTSTAT);
return 0;
}
static int dma_mcux_lpc_init(const struct device *dev)
{
const struct dma_mcux_lpc_config *config = dev->config;
struct dma_mcux_lpc_dma_data *data = dev->data;
/* Indicate that the Otrig Muxes are not connected */
for (int i = 0; i < config->num_of_otrigs; i++) {
data->otrig_array[i].source_channel = EMPTY_OTRIG;
data->otrig_array[i].linked_channel = EMPTY_OTRIG;
}
/*
* Initialize to -1 to indicate dma channel does not have a slot
* assigned to store dma channel data
*/
for (int i = 0; i < config->num_of_channels; i++) {
data->channel_index[i] = -1;
}
data->num_channels_used = 0;
DMA_Init(DEV_BASE(dev));
INPUTMUX_Init(INPUTMUX);
config->irq_config_func(dev);
return 0;
}
static const struct dma_driver_api dma_mcux_lpc_api = {
.config = dma_mcux_lpc_configure,
.start = dma_mcux_lpc_start,
.stop = dma_mcux_lpc_stop,
.reload = dma_mcux_lpc_reload,
.get_status = dma_mcux_lpc_get_status,
};
#define DMA_MCUX_LPC_CONFIG_FUNC(n) \
static void dma_mcux_lpc_config_func_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), \
DT_INST_IRQ(n, priority), \
dma_mcux_lpc_irq_handler, DEVICE_DT_INST_GET(n), 0);\
\
irq_enable(DT_INST_IRQN(n)); \
}
#define DMA_MCUX_LPC_IRQ_CFG_FUNC_INIT(n) \
.irq_config_func = dma_mcux_lpc_config_func_##n
#define DMA_MCUX_LPC_INIT_CFG(n) \
DMA_MCUX_LPC_DECLARE_CFG(n, \
DMA_MCUX_LPC_IRQ_CFG_FUNC_INIT(n))
#define DMA_MCUX_LPC_NUM_USED_CHANNELS(n) \
COND_CODE_0(CONFIG_DMA_MCUX_LPC_NUMBER_OF_CHANNELS_ALLOCATED, \
(DT_INST_PROP(n, dma_channels)), \
(MIN(CONFIG_DMA_MCUX_LPC_NUMBER_OF_CHANNELS_ALLOCATED, \
DT_INST_PROP(n, dma_channels))))
#define DMA_MCUX_LPC_DECLARE_CFG(n, IRQ_FUNC_INIT) \
static const struct dma_mcux_lpc_config dma_##n##_config = { \
.base = (DMA_Type *)DT_INST_REG_ADDR(n), \
.num_of_channels = DT_INST_PROP(n, dma_channels), \
.num_of_otrigs = DT_INST_PROP_OR(n, nxp_dma_num_of_otrigs, 0), \
.otrig_base_address = DT_INST_PROP_OR(n, nxp_dma_otrig_base_address, 0x0), \
.itrig_base_address = DT_INST_PROP_OR(n, nxp_dma_itrig_base_address, 0x0), \
IRQ_FUNC_INIT \
}
#define DMA_INIT(n) \
\
static const struct dma_mcux_lpc_config dma_##n##_config; \
\
static struct channel_data dma_##n##_channel_data_arr \
[DMA_MCUX_LPC_NUM_USED_CHANNELS(n)] = {0}; \
\
static struct dma_otrig dma_##n##_otrig_arr \
[DT_INST_PROP_OR(n, nxp_dma_num_of_otrigs, 0)]; \
\
static int8_t \
dma_##n##_channel_index_arr \
[DT_INST_PROP(n, dma_channels)] = {0}; \
\
static struct dma_mcux_lpc_dma_data dma_data_##n = { \
.channel_data = dma_##n##_channel_data_arr, \
.channel_index = dma_##n##_channel_index_arr, \
.otrig_array = dma_##n##_otrig_arr, \
}; \
\
DEVICE_DT_INST_DEFINE(n, \
&dma_mcux_lpc_init, \
NULL, \
&dma_data_##n, &dma_##n##_config, \
PRE_KERNEL_1, CONFIG_DMA_INIT_PRIORITY, \
&dma_mcux_lpc_api); \
\
DMA_MCUX_LPC_CONFIG_FUNC(n) \
DMA_MCUX_LPC_INIT_CFG(n);
DT_INST_FOREACH_STATUS_OKAY(DMA_INIT)