603 lines
18 KiB
C
603 lines
18 KiB
C
/*
|
|
* Copyright 2023-2024 NXP
|
|
* Copyright (c) 2020 Toby Firth
|
|
*
|
|
* Based on adc_mcux_adc16.c and adc_mcux_adc12.c, which are:
|
|
* Copyright (c) 2017-2018, NXP
|
|
* Copyright (c) 2019 Vestas Wind Systems A/S
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#define DT_DRV_COMPAT nxp_lpc_lpadc
|
|
|
|
#include <errno.h>
|
|
#include <zephyr/drivers/adc.h>
|
|
#include <zephyr/sys/util.h>
|
|
#include <zephyr/drivers/regulator.h>
|
|
#include <zephyr/drivers/clock_control.h>
|
|
#include <zephyr/drivers/pinctrl.h>
|
|
|
|
#define LOG_LEVEL CONFIG_ADC_LOG_LEVEL
|
|
#include <zephyr/logging/log.h>
|
|
#include <zephyr/irq.h>
|
|
#include <fsl_lpadc.h>
|
|
LOG_MODULE_REGISTER(nxp_mcux_lpadc);
|
|
|
|
/*
|
|
* Currently, no instance of the ADC IP has more than
|
|
* 8 channels present. Therefore, we treat channels
|
|
* with an index 8 or higher as a side b channel, with
|
|
* the channel index given by channel_num % 8
|
|
*/
|
|
#define CHANNELS_PER_SIDE 0x8
|
|
|
|
#define ADC_CONTEXT_USES_KERNEL_TIMER
|
|
#include "adc_context.h"
|
|
|
|
struct mcux_lpadc_config {
|
|
ADC_Type *base;
|
|
lpadc_reference_voltage_source_t voltage_ref;
|
|
uint8_t power_level;
|
|
uint32_t calibration_average;
|
|
uint32_t offset_a;
|
|
uint32_t offset_b;
|
|
void (*irq_config_func)(const struct device *dev);
|
|
const struct pinctrl_dev_config *pincfg;
|
|
const struct device *ref_supplies;
|
|
const struct device *clock_dev;
|
|
clock_control_subsys_t clock_subsys;
|
|
int32_t ref_supply_val;
|
|
};
|
|
|
|
struct mcux_lpadc_data {
|
|
const struct device *dev;
|
|
struct adc_context ctx;
|
|
uint16_t *buffer;
|
|
uint16_t *repeat_buffer;
|
|
uint32_t channels;
|
|
lpadc_conv_command_config_t cmd_config[CONFIG_LPADC_CHANNEL_COUNT];
|
|
};
|
|
|
|
static int mcux_lpadc_acquisition_time_setup(const struct device *dev, uint16_t acq_time,
|
|
lpadc_conv_command_config_t *cmd)
|
|
{
|
|
const struct mcux_lpadc_config *config = dev->config;
|
|
uint32_t adc_freq_hz = 0;
|
|
uint32_t conversion_factor = 0;
|
|
uint32_t acquisition_time_value = ADC_ACQ_TIME_VALUE(acq_time);
|
|
uint8_t acquisition_time_unit = ADC_ACQ_TIME_UNIT(acq_time);
|
|
|
|
if (ADC_ACQ_TIME_DEFAULT == acquisition_time_value) {
|
|
return 0;
|
|
}
|
|
|
|
/* If the acquisition time is expressed in ADC ticks, then directly compare
|
|
* the acquisition time with configuration items (3, 5, 7, etc. ADC ticks)
|
|
* supported by the LPADC. The conversion factor is set to 1 (means do not need
|
|
* to convert configuration items from ADC ticks to nanoseconds).
|
|
* If the acquisition time is expressed in microseconds or nanoseconds, First
|
|
* calculate the ADC cycle based on the ADC clock, then convert the configuration
|
|
* items supported by LPADC into nanoseconds, and finally compare the acquisition
|
|
* time with configuration items. The conversion factor is equal to the ADC cycle
|
|
* (means convert configuration items from ADC ticks to nanoseconds).
|
|
*/
|
|
if (ADC_ACQ_TIME_TICKS == acquisition_time_unit) {
|
|
conversion_factor = 1;
|
|
} else {
|
|
if (clock_control_get_rate(config->clock_dev, config->clock_subsys, &adc_freq_hz)) {
|
|
LOG_ERR("Get clock rate failed");
|
|
return -EINVAL;
|
|
}
|
|
|
|
conversion_factor = 1000000000 / adc_freq_hz;
|
|
|
|
if (ADC_ACQ_TIME_MICROSECONDS == acquisition_time_unit) {
|
|
acquisition_time_value *= 1000;
|
|
}
|
|
}
|
|
|
|
if ((3 * conversion_factor) >= acquisition_time_value) {
|
|
cmd->sampleTimeMode = kLPADC_SampleTimeADCK3;
|
|
} else if ((5 * conversion_factor) >= acquisition_time_value) {
|
|
cmd->sampleTimeMode = kLPADC_SampleTimeADCK5;
|
|
} else if ((7 * conversion_factor) >= acquisition_time_value) {
|
|
cmd->sampleTimeMode = kLPADC_SampleTimeADCK7;
|
|
} else if ((11 * conversion_factor) >= acquisition_time_value) {
|
|
cmd->sampleTimeMode = kLPADC_SampleTimeADCK11;
|
|
} else if ((19 * conversion_factor) >= acquisition_time_value) {
|
|
cmd->sampleTimeMode = kLPADC_SampleTimeADCK19;
|
|
} else if ((35 * conversion_factor) >= acquisition_time_value) {
|
|
cmd->sampleTimeMode = kLPADC_SampleTimeADCK35;
|
|
} else if ((67 * conversion_factor) >= acquisition_time_value) {
|
|
cmd->sampleTimeMode = kLPADC_SampleTimeADCK67;
|
|
} else if ((131 * conversion_factor) >= acquisition_time_value) {
|
|
cmd->sampleTimeMode = kLPADC_SampleTimeADCK131;
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mcux_lpadc_channel_setup(const struct device *dev,
|
|
const struct adc_channel_cfg *channel_cfg)
|
|
{
|
|
const struct mcux_lpadc_config *config = dev->config;
|
|
const struct device *regulator = config->ref_supplies;
|
|
int32_t vref_uv = config->ref_supply_val * 1000;
|
|
struct mcux_lpadc_data *data = dev->data;
|
|
lpadc_conv_command_config_t *cmd;
|
|
uint8_t channel_side;
|
|
uint8_t channel_num;
|
|
int err;
|
|
|
|
/* User may configure maximum number of active channels */
|
|
if (channel_cfg->channel_id >= CONFIG_LPADC_CHANNEL_COUNT) {
|
|
LOG_ERR("Channel %d is not valid", channel_cfg->channel_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Select ADC CMD register to configure based off channel ID */
|
|
cmd = &data->cmd_config[channel_cfg->channel_id];
|
|
|
|
/* If bit 5 of input_positive is set, then channel side B is used */
|
|
channel_side = 0x20 & channel_cfg->input_positive;
|
|
/* Channel number is selected by lower 4 bits of input_positive */
|
|
channel_num = ADC_CMDL_ADCH(channel_cfg->input_positive);
|
|
|
|
LOG_DBG("Channel num: %u, channel side: %c", channel_num,
|
|
channel_side == 0 ? 'A' : 'B');
|
|
|
|
LPADC_GetDefaultConvCommandConfig(cmd);
|
|
|
|
/* Configure LPADC acquisition time. */
|
|
if (mcux_lpadc_acquisition_time_setup(dev, channel_cfg->acquisition_time, cmd)) {
|
|
LOG_ERR("LPADC acquisition time setting failed");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (channel_cfg->differential) {
|
|
/* Channel pairs must match in differential mode */
|
|
if ((ADC_CMDL_ADCH(channel_cfg->input_positive)) !=
|
|
(ADC_CMDL_ADCH(channel_cfg->input_negative))) {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
#if defined(FSL_FEATURE_LPADC_HAS_CMDL_DIFF) && FSL_FEATURE_LPADC_HAS_CMDL_DIFF
|
|
/* Check to see which channel is the positive input */
|
|
if (channel_cfg->input_positive & 0x20) {
|
|
/* Channel B is positive side */
|
|
cmd->sampleChannelMode =
|
|
kLPADC_SampleChannelDiffBothSideBA;
|
|
} else {
|
|
/* Channel A is positive side */
|
|
cmd->sampleChannelMode =
|
|
kLPADC_SampleChannelDiffBothSideAB;
|
|
}
|
|
#else
|
|
cmd->sampleChannelMode = kLPADC_SampleChannelDiffBothSide;
|
|
#endif
|
|
} else if (channel_side != 0) {
|
|
cmd->sampleChannelMode = kLPADC_SampleChannelSingleEndSideB;
|
|
} else {
|
|
/* Default value for sampleChannelMode is SideA */
|
|
}
|
|
#if defined(FSL_FEATURE_LPADC_HAS_CMDL_CSCALE) && FSL_FEATURE_LPADC_HAS_CMDL_CSCALE
|
|
/*
|
|
* The true scaling factor used by the LPADC is 30/64, instead of
|
|
* 1/2. Select 1/2 as this is the closest scaling factor available
|
|
* in Zephyr.
|
|
*/
|
|
if (channel_cfg->gain == ADC_GAIN_1_2) {
|
|
LOG_INF("Channel gain of 30/64 selected");
|
|
cmd->sampleScaleMode = kLPADC_SamplePartScale;
|
|
} else if (channel_cfg->gain == ADC_GAIN_1) {
|
|
cmd->sampleScaleMode = kLPADC_SampleFullScale;
|
|
} else {
|
|
LOG_ERR("Invalid channel gain");
|
|
return -EINVAL;
|
|
}
|
|
#else
|
|
if (channel_cfg->gain != ADC_GAIN_1) {
|
|
LOG_ERR("Invalid channel gain");
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* ADC_REF_EXTERNAL1: Use SoC internal regulator as LPADC reference voltage.
|
|
* ADC_REF_EXTERNAL0: Use other voltage source (maybe also within the SoCs)
|
|
* as LPADC reference voltage, like VREFH, VDDA, etc.
|
|
*/
|
|
if (channel_cfg->reference == ADC_REF_EXTERNAL1) {
|
|
LOG_DBG("ref external1");
|
|
if (regulator != NULL) {
|
|
err = regulator_set_voltage(regulator, vref_uv, vref_uv);
|
|
if (err < 0) {
|
|
return err;
|
|
}
|
|
} else {
|
|
return -EINVAL;
|
|
}
|
|
} else if (channel_cfg->reference == ADC_REF_EXTERNAL0) {
|
|
LOG_DBG("ref external0");
|
|
} else {
|
|
LOG_DBG("ref not support");
|
|
return -EINVAL;
|
|
}
|
|
|
|
cmd->channelNumber = channel_num;
|
|
return 0;
|
|
}
|
|
|
|
static int mcux_lpadc_start_read(const struct device *dev,
|
|
const struct adc_sequence *sequence)
|
|
{
|
|
const struct mcux_lpadc_config *config = dev->config;
|
|
struct mcux_lpadc_data *data = dev->data;
|
|
lpadc_hardware_average_mode_t hardware_average_mode;
|
|
uint8_t channel, last_enabled;
|
|
#if defined(FSL_FEATURE_LPADC_HAS_CMDL_MODE) \
|
|
&& FSL_FEATURE_LPADC_HAS_CMDL_MODE
|
|
lpadc_conversion_resolution_mode_t resolution_mode;
|
|
|
|
switch (sequence->resolution) {
|
|
case 12:
|
|
case 13:
|
|
resolution_mode = kLPADC_ConversionResolutionStandard;
|
|
break;
|
|
case 16:
|
|
resolution_mode = kLPADC_ConversionResolutionHigh;
|
|
break;
|
|
default:
|
|
LOG_ERR("Unsupported resolution %d", sequence->resolution);
|
|
return -ENOTSUP;
|
|
}
|
|
#else
|
|
/* If FSL_FEATURE_LPADC_HAS_CMDL_MODE is not defined
|
|
only 12/13 bit resolution is supported. */
|
|
if (sequence->resolution != 12 && sequence->resolution != 13) {
|
|
LOG_ERR("Unsupported resolution %d", sequence->resolution);
|
|
return -ENOTSUP;
|
|
}
|
|
#endif /* FSL_FEATURE_LPADC_HAS_CMDL_MODE */
|
|
|
|
switch (sequence->oversampling) {
|
|
case 0:
|
|
hardware_average_mode = kLPADC_HardwareAverageCount1;
|
|
break;
|
|
case 1:
|
|
hardware_average_mode = kLPADC_HardwareAverageCount2;
|
|
break;
|
|
case 2:
|
|
hardware_average_mode = kLPADC_HardwareAverageCount4;
|
|
break;
|
|
case 3:
|
|
hardware_average_mode = kLPADC_HardwareAverageCount8;
|
|
break;
|
|
case 4:
|
|
hardware_average_mode = kLPADC_HardwareAverageCount16;
|
|
break;
|
|
case 5:
|
|
hardware_average_mode = kLPADC_HardwareAverageCount32;
|
|
break;
|
|
case 6:
|
|
hardware_average_mode = kLPADC_HardwareAverageCount64;
|
|
break;
|
|
case 7:
|
|
hardware_average_mode = kLPADC_HardwareAverageCount128;
|
|
break;
|
|
default:
|
|
LOG_ERR("Unsupported oversampling value %d",
|
|
sequence->oversampling);
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/*
|
|
* Now, look at the selected channels to determine which ADC channels
|
|
* we need to configure, and set those channels up.
|
|
*
|
|
* Since this ADC supports chaining channels in hardware, we will
|
|
* start with the highest channel ID and work downwards, chaining
|
|
* channels as we go.
|
|
*/
|
|
channel = CONFIG_LPADC_CHANNEL_COUNT;
|
|
last_enabled = 0;
|
|
while (channel-- > 0) {
|
|
if (sequence->channels & BIT(channel)) {
|
|
/* Setup this channel command */
|
|
#if defined(FSL_FEATURE_LPADC_HAS_CMDL_MODE) && FSL_FEATURE_LPADC_HAS_CMDL_MODE
|
|
data->cmd_config[channel].conversionResolutionMode =
|
|
resolution_mode;
|
|
#endif
|
|
data->cmd_config[channel].hardwareAverageMode =
|
|
hardware_average_mode;
|
|
if (last_enabled) {
|
|
/* Chain channel */
|
|
data->cmd_config[channel].chainedNextCommandNumber =
|
|
last_enabled + 1;
|
|
LOG_DBG("Chaining channel %u to %u",
|
|
channel, last_enabled);
|
|
} else {
|
|
/* End of chain */
|
|
data->cmd_config[channel].chainedNextCommandNumber = 0;
|
|
}
|
|
last_enabled = channel;
|
|
LPADC_SetConvCommandConfig(config->base,
|
|
channel + 1, &data->cmd_config[channel]);
|
|
}
|
|
};
|
|
|
|
data->buffer = sequence->buffer;
|
|
|
|
adc_context_start_read(&data->ctx, sequence);
|
|
int error = adc_context_wait_for_completion(&data->ctx);
|
|
|
|
return error;
|
|
}
|
|
|
|
static int mcux_lpadc_read_async(const struct device *dev,
|
|
const struct adc_sequence *sequence,
|
|
struct k_poll_signal *async)
|
|
{
|
|
struct mcux_lpadc_data *data = dev->data;
|
|
int error;
|
|
|
|
adc_context_lock(&data->ctx, async ? true : false, async);
|
|
error = mcux_lpadc_start_read(dev, sequence);
|
|
adc_context_release(&data->ctx, error);
|
|
|
|
return error;
|
|
}
|
|
|
|
static int mcux_lpadc_read(const struct device *dev,
|
|
const struct adc_sequence *sequence)
|
|
{
|
|
return mcux_lpadc_read_async(dev, sequence, NULL);
|
|
}
|
|
|
|
static void mcux_lpadc_start_channel(const struct device *dev)
|
|
{
|
|
const struct mcux_lpadc_config *config = dev->config;
|
|
struct mcux_lpadc_data *data = dev->data;
|
|
lpadc_conv_trigger_config_t trigger_config;
|
|
uint8_t first_channel;
|
|
|
|
first_channel = find_lsb_set(data->channels) - 1;
|
|
|
|
LOG_DBG("Starting channel %d, input %d", first_channel,
|
|
data->cmd_config[first_channel].channelNumber);
|
|
|
|
LPADC_GetDefaultConvTriggerConfig(&trigger_config);
|
|
|
|
trigger_config.targetCommandId = first_channel + 1;
|
|
|
|
/* configures trigger0. */
|
|
LPADC_SetConvTriggerConfig(config->base, 0, &trigger_config);
|
|
|
|
/* 1 is trigger0 mask. */
|
|
LPADC_DoSoftwareTrigger(config->base, 1);
|
|
}
|
|
|
|
static void adc_context_start_sampling(struct adc_context *ctx)
|
|
{
|
|
struct mcux_lpadc_data *data =
|
|
CONTAINER_OF(ctx, struct mcux_lpadc_data, ctx);
|
|
|
|
data->channels = ctx->sequence.channels;
|
|
data->repeat_buffer = data->buffer;
|
|
|
|
mcux_lpadc_start_channel(data->dev);
|
|
}
|
|
|
|
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
|
|
bool repeat_sampling)
|
|
{
|
|
struct mcux_lpadc_data *data =
|
|
CONTAINER_OF(ctx, struct mcux_lpadc_data, ctx);
|
|
|
|
if (repeat_sampling) {
|
|
data->buffer = data->repeat_buffer;
|
|
}
|
|
}
|
|
|
|
static void mcux_lpadc_isr(const struct device *dev)
|
|
{
|
|
const struct mcux_lpadc_config *config = dev->config;
|
|
struct mcux_lpadc_data *data = dev->data;
|
|
ADC_Type *base = config->base;
|
|
|
|
lpadc_conv_result_t conv_result;
|
|
lpadc_sample_channel_mode_t conv_mode;
|
|
int16_t result;
|
|
uint16_t channel;
|
|
|
|
#if (defined(FSL_FEATURE_LPADC_FIFO_COUNT) \
|
|
&& (FSL_FEATURE_LPADC_FIFO_COUNT == 2U))
|
|
LPADC_GetConvResult(base, &conv_result, 0U);
|
|
#else
|
|
LPADC_GetConvResult(base, &conv_result);
|
|
#endif /* FSL_FEATURE_LPADC_FIFO_COUNT */
|
|
|
|
channel = conv_result.commandIdSource - 1;
|
|
LOG_DBG("Finished channel %d. Raw result is 0x%04x",
|
|
channel, conv_result.convValue);
|
|
/*
|
|
* For 12 or 13 bit resolution the LSBs will be 0, so a bit shift
|
|
* is needed. For differential modes, the ADC conversion to
|
|
* millivolts expects to use a shift one less than the resolution.
|
|
*
|
|
* For 16 bit modes, the adc value can be left untouched. ADC
|
|
* API should treat the value as signed if the channel is
|
|
* in differential mode
|
|
*/
|
|
conv_mode = data->cmd_config[channel].sampleChannelMode;
|
|
if (data->ctx.sequence.resolution < 15) {
|
|
result = ((conv_result.convValue >> 3) & 0xFFF);
|
|
#if defined(FSL_FEATURE_LPADC_HAS_CMDL_DIFF) && FSL_FEATURE_LPADC_HAS_CMDL_DIFF
|
|
if (conv_mode == kLPADC_SampleChannelDiffBothSideAB ||
|
|
conv_mode == kLPADC_SampleChannelDiffBothSideBA) {
|
|
#else
|
|
if (conv_mode == kLPADC_SampleChannelDiffBothSide) {
|
|
#endif
|
|
if ((conv_result.convValue & 0x8000)) {
|
|
/* 13 bit mode, MSB is sign bit. (2's complement) */
|
|
result -= 0x1000;
|
|
}
|
|
}
|
|
*data->buffer++ = result;
|
|
} else {
|
|
*data->buffer++ = conv_result.convValue;
|
|
}
|
|
|
|
|
|
data->channels &= ~BIT(channel);
|
|
|
|
/*
|
|
* Hardware will automatically continue sampling, so no need
|
|
* to issue new trigger
|
|
*/
|
|
if (data->channels == 0) {
|
|
adc_context_on_sampling_done(&data->ctx, dev);
|
|
}
|
|
}
|
|
|
|
static int mcux_lpadc_init(const struct device *dev)
|
|
{
|
|
const struct mcux_lpadc_config *config = dev->config;
|
|
struct mcux_lpadc_data *data = dev->data;
|
|
ADC_Type *base = config->base;
|
|
lpadc_config_t adc_config;
|
|
int err;
|
|
|
|
err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
|
|
/* Enable necessary regulators */
|
|
const struct device *regulator = config->ref_supplies;
|
|
|
|
if (regulator != NULL) {
|
|
err = regulator_enable(regulator);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
}
|
|
|
|
LPADC_GetDefaultConfig(&adc_config);
|
|
|
|
adc_config.enableAnalogPreliminary = true;
|
|
adc_config.referenceVoltageSource = config->voltage_ref;
|
|
|
|
#if defined(FSL_FEATURE_LPADC_HAS_CTRL_CAL_AVGS) \
|
|
&& FSL_FEATURE_LPADC_HAS_CTRL_CAL_AVGS
|
|
adc_config.conversionAverageMode = config->calibration_average;
|
|
#endif /* FSL_FEATURE_LPADC_HAS_CTRL_CAL_AVGS */
|
|
|
|
#if !(DT_ANY_INST_HAS_PROP_STATUS_OKAY(no_power_level))
|
|
adc_config.powerLevelMode = config->power_level;
|
|
#endif
|
|
|
|
LPADC_Init(base, &adc_config);
|
|
|
|
/* Do ADC calibration. */
|
|
#if defined(FSL_FEATURE_LPADC_HAS_CTRL_CALOFS) \
|
|
&& FSL_FEATURE_LPADC_HAS_CTRL_CALOFS
|
|
#if defined(FSL_FEATURE_LPADC_HAS_OFSTRIM) \
|
|
&& FSL_FEATURE_LPADC_HAS_OFSTRIM
|
|
/* Request offset calibration. */
|
|
#if defined(CONFIG_LPADC_DO_OFFSET_CALIBRATION) \
|
|
&& CONFIG_LPADC_DO_OFFSET_CALIBRATION
|
|
LPADC_DoOffsetCalibration(base);
|
|
#else
|
|
LPADC_SetOffsetValue(base,
|
|
config->offset_a,
|
|
config->offset_b);
|
|
#endif /* DEMO_LPADC_DO_OFFSET_CALIBRATION */
|
|
#endif /* FSL_FEATURE_LPADC_HAS_OFSTRIM */
|
|
/* Request gain calibration. */
|
|
LPADC_DoAutoCalibration(base);
|
|
#endif /* FSL_FEATURE_LPADC_HAS_CTRL_CALOFS */
|
|
|
|
#if (defined(FSL_FEATURE_LPADC_HAS_CFG_CALOFS) \
|
|
&& FSL_FEATURE_LPADC_HAS_CFG_CALOFS)
|
|
/* Do auto calibration. */
|
|
LPADC_DoAutoCalibration(base);
|
|
#endif /* FSL_FEATURE_LPADC_HAS_CFG_CALOFS */
|
|
|
|
/* Enable the watermark interrupt. */
|
|
#if (defined(FSL_FEATURE_LPADC_FIFO_COUNT) \
|
|
&& (FSL_FEATURE_LPADC_FIFO_COUNT == 2U))
|
|
LPADC_EnableInterrupts(base, kLPADC_FIFO0WatermarkInterruptEnable);
|
|
#else
|
|
LPADC_EnableInterrupts(base, kLPADC_FIFOWatermarkInterruptEnable);
|
|
#endif /* FSL_FEATURE_LPADC_FIFO_COUNT */
|
|
|
|
config->irq_config_func(dev);
|
|
data->dev = dev;
|
|
|
|
adc_context_unlock_unconditionally(&data->ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct adc_driver_api mcux_lpadc_driver_api = {
|
|
.channel_setup = mcux_lpadc_channel_setup,
|
|
.read = mcux_lpadc_read,
|
|
#ifdef CONFIG_ADC_ASYNC
|
|
.read_async = mcux_lpadc_read_async,
|
|
#endif
|
|
};
|
|
|
|
#define LPADC_MCUX_INIT(n) \
|
|
\
|
|
static void mcux_lpadc_config_func_##n(const struct device *dev); \
|
|
\
|
|
PINCTRL_DT_INST_DEFINE(n); \
|
|
static const struct mcux_lpadc_config mcux_lpadc_config_##n = { \
|
|
.base = (ADC_Type *)DT_INST_REG_ADDR(n), \
|
|
.voltage_ref = DT_INST_PROP(n, voltage_ref), \
|
|
.calibration_average = DT_INST_ENUM_IDX_OR(n, calibration_average, 0), \
|
|
.power_level = DT_INST_PROP_OR(n, power_level, 0), \
|
|
.offset_a = DT_INST_PROP(n, offset_value_a), \
|
|
.offset_b = DT_INST_PROP(n, offset_value_b), \
|
|
.irq_config_func = mcux_lpadc_config_func_##n, \
|
|
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
|
|
.ref_supplies = COND_CODE_1(DT_INST_NODE_HAS_PROP(n, nxp_references),\
|
|
(DEVICE_DT_GET(DT_PHANDLE(DT_DRV_INST(n),\
|
|
nxp_references))), (NULL)),\
|
|
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \
|
|
.clock_subsys = (clock_control_subsys_t)DT_INST_CLOCKS_CELL(n, name),\
|
|
.ref_supply_val = COND_CODE_1(\
|
|
DT_INST_NODE_HAS_PROP(n, nxp_references),\
|
|
(DT_PHA(DT_DRV_INST(n), nxp_references, vref_mv)), \
|
|
(0)),\
|
|
}; \
|
|
static struct mcux_lpadc_data mcux_lpadc_data_##n = { \
|
|
ADC_CONTEXT_INIT_TIMER(mcux_lpadc_data_##n, ctx), \
|
|
ADC_CONTEXT_INIT_LOCK(mcux_lpadc_data_##n, ctx), \
|
|
ADC_CONTEXT_INIT_SYNC(mcux_lpadc_data_##n, ctx), \
|
|
}; \
|
|
\
|
|
DEVICE_DT_INST_DEFINE(n, \
|
|
&mcux_lpadc_init, NULL, &mcux_lpadc_data_##n, \
|
|
&mcux_lpadc_config_##n, POST_KERNEL, \
|
|
CONFIG_ADC_INIT_PRIORITY, \
|
|
&mcux_lpadc_driver_api); \
|
|
\
|
|
static void mcux_lpadc_config_func_##n(const struct device *dev) \
|
|
{ \
|
|
IRQ_CONNECT(DT_INST_IRQN(n), \
|
|
DT_INST_IRQ(n, priority), mcux_lpadc_isr, \
|
|
DEVICE_DT_INST_GET(n), 0); \
|
|
\
|
|
irq_enable(DT_INST_IRQN(n)); \
|
|
} \
|
|
\
|
|
BUILD_ASSERT((DT_INST_PROP_OR(n, power_level, 0) >= 0) && \
|
|
(DT_INST_PROP_OR(n, power_level, 0) <= 3), "power_level: wrong value");
|
|
|
|
DT_INST_FOREACH_STATUS_OKAY(LPADC_MCUX_INIT)
|