zephyr/drivers/adc/adc_mcux_gau_adc.c

393 lines
12 KiB
C

/*
* Copyright 2022-2024 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_gau_adc
#include <zephyr/drivers/adc.h>
#include <zephyr/irq.h>
#include <errno.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(adc_mcux_gau_adc, CONFIG_ADC_LOG_LEVEL);
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
#include <fsl_adc.h>
#define NUM_ADC_CHANNELS 16
struct mcux_gau_adc_config {
ADC_Type *base;
void (*irq_config_func)(const struct device *dev);
adc_clock_divider_t clock_div;
adc_analog_portion_power_mode_t power_mode;
bool input_gain_buffer;
adc_calibration_ref_t cal_volt;
};
struct mcux_gau_adc_data {
const struct device *dev;
struct adc_context ctx;
adc_channel_source_t channel_sources[NUM_ADC_CHANNELS];
uint8_t scan_length;
uint16_t *results;
size_t results_length;
uint16_t *repeat;
struct k_work read_samples_work;
};
static int mcux_gau_adc_channel_setup(const struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
const struct mcux_gau_adc_config *config = dev->config;
struct mcux_gau_adc_data *data = dev->data;
ADC_Type *base = config->base;
uint8_t channel_id = channel_cfg->channel_id;
uint8_t source_channel = channel_cfg->input_positive;
uint32_t tmp_reg;
if (channel_cfg->differential) {
LOG_ERR("Differential channels not yet supported");
return -ENOTSUP;
}
if (channel_id >= NUM_ADC_CHANNELS) {
LOG_ERR("ADC does not support more than %d channels", NUM_ADC_CHANNELS);
return -ENOTSUP;
}
if (source_channel > 12 && source_channel != 15) {
LOG_ERR("Invalid source channel");
return -EINVAL;
}
/* Set Acquisition/Warmup time */
tmp_reg = base->ADC_REG_INTERVAL;
base->ADC_REG_INTERVAL &= ~ADC_ADC_REG_INTERVAL_WARMUP_TIME_MASK;
base->ADC_REG_INTERVAL &= ~ADC_ADC_REG_INTERVAL_BYPASS_WARMUP_MASK;
if (channel_cfg->acquisition_time == 0) {
base->ADC_REG_INTERVAL |= ADC_ADC_REG_INTERVAL_BYPASS_WARMUP_MASK;
} else if (channel_cfg->acquisition_time <= 32) {
base->ADC_REG_INTERVAL |=
ADC_ADC_REG_INTERVAL_WARMUP_TIME(channel_cfg->acquisition_time - 1);
} else {
LOG_ERR("Invalid acquisition time requested of ADC");
return -EINVAL;
}
/* If user changed the warmup time, warn */
if (base->ADC_REG_INTERVAL != tmp_reg) {
LOG_WRN("Acquisition/Warmup time is global to entire ADC peripheral, "
"i.e. channel_setup will override this property for all previous channels.");
}
/* Set Input Gain */
tmp_reg = base->ADC_REG_ANA;
base->ADC_REG_ANA &= ~ADC_ADC_REG_ANA_INBUF_GAIN_MASK;
if (channel_cfg->gain == ADC_GAIN_1) {
base->ADC_REG_ANA |= ADC_ADC_REG_ANA_INBUF_GAIN(kADC_InputGain1);
} else if (channel_cfg->gain == ADC_GAIN_1_2) {
base->ADC_REG_ANA |= ADC_ADC_REG_ANA_INBUF_GAIN(kADC_InputGain0P5);
} else if (channel_cfg->gain == ADC_GAIN_2) {
base->ADC_REG_ANA |= ADC_ADC_REG_ANA_INBUF_GAIN(kADC_InputGain2);
} else {
LOG_ERR("Invalid gain");
return -EINVAL;
}
/* If user changed the gain, warn */
if (base->ADC_REG_ANA != tmp_reg) {
LOG_WRN("Input gain is global to entire ADC peripheral, "
"i.e. channel_setup will override this property for all previous channels.");
}
/* Set Reference voltage of ADC */
tmp_reg = base->ADC_REG_ANA;
base->ADC_REG_ANA &= ~ADC_ADC_REG_ANA_VREF_SEL_MASK;
if (channel_cfg->reference == ADC_REF_INTERNAL) {
base->ADC_REG_ANA |= ADC_ADC_REG_ANA_VREF_SEL(kADC_Vref1P2V);
} else if (channel_cfg->reference == ADC_REF_EXTERNAL0) {
base->ADC_REG_ANA |= ADC_ADC_REG_ANA_VREF_SEL(kADC_VrefExternal);
} else if (channel_cfg->reference == ADC_REF_VDD_1) {
base->ADC_REG_ANA |= ADC_ADC_REG_ANA_VREF_SEL(kADC_Vref1P8V);
} else {
LOG_ERR("Vref not supported");
return -ENOTSUP;
}
/* if user changed the reference voltage, warn */
if (base->ADC_REG_ANA != tmp_reg) {
LOG_WRN("Reference voltage is global to entire ADC peripheral, "
"i.e. channel_setup will override this property for all previous channels.");
}
data->channel_sources[channel_id] = source_channel;
return 0;
}
static void mcux_gau_adc_read_samples(struct k_work *work)
{
struct mcux_gau_adc_data *data =
CONTAINER_OF(work, struct mcux_gau_adc_data,
read_samples_work);
const struct device *dev = data->dev;
const struct mcux_gau_adc_config *config = dev->config;
ADC_Type *base = config->base;
/* using this variable to prevent buffer overflow */
size_t length = data->results_length;
while ((ADC_GetFifoDataCount(base) > 0) && (--length > 0)) {
*(data->results++) = (uint16_t)ADC_GetConversionResult(base);
}
adc_context_on_sampling_done(&data->ctx, dev);
}
static void mcux_gau_adc_isr(const struct device *dev)
{
const struct mcux_gau_adc_config *config = dev->config;
struct mcux_gau_adc_data *data = dev->data;
ADC_Type *base = config->base;
if (ADC_GetStatusFlags(base) & kADC_DataReadyInterruptFlag) {
/* Clear flag to avoid infinite interrupt */
ADC_ClearStatusFlags(base, kADC_DataReadyInterruptFlag);
/* offload and do not block during irq */
k_work_submit(&data->read_samples_work);
} else {
LOG_ERR("ADC received unimplemented interrupt");
}
}
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct mcux_gau_adc_data *data =
CONTAINER_OF(ctx, struct mcux_gau_adc_data, ctx);
const struct mcux_gau_adc_config *config = data->dev->config;
ADC_Type *base = config->base;
ADC_StopConversion(base);
ADC_DoSoftwareTrigger(base);
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
bool repeat_sampling)
{
struct mcux_gau_adc_data *data =
CONTAINER_OF(ctx, struct mcux_gau_adc_data, ctx);
if (repeat_sampling) {
data->results = data->repeat;
}
}
static int mcux_gau_adc_do_read(const struct device *dev,
const struct adc_sequence *sequence)
{
const struct mcux_gau_adc_config *config = dev->config;
ADC_Type *base = config->base;
struct mcux_gau_adc_data *data = dev->data;
uint8_t num_channels = 0;
/* if user selected channel >= NUM_ADC_CHANNELS that is invalid */
if (sequence->channels & (0xFFFF << NUM_ADC_CHANNELS)) {
LOG_ERR("Invalid channels selected for sequence");
return -EINVAL;
}
/* Count channels */
for (int i = 0; i < NUM_ADC_CHANNELS; i++) {
num_channels += ((sequence->channels & (0x1 << i)) ? 1 : 0);
}
/* Buffer must hold (number of samples per channel) * (number of channels) samples */
if ((sequence->options != NULL && sequence->buffer_size <
((1 + sequence->options->extra_samplings) * num_channels)) ||
(sequence->options == NULL && sequence->buffer_size < num_channels)) {
LOG_ERR("Buffer size too small");
return -ENOMEM;
}
/* Set scan length in data struct for isr to understand & set scan length register */
base->ADC_REG_CONFIG &= ~ADC_ADC_REG_CONFIG_SCAN_LENGTH_MASK;
data->scan_length = num_channels;
/* Register Value is 1 less than what it represents */
base->ADC_REG_CONFIG |= ADC_ADC_REG_CONFIG_SCAN_LENGTH(data->scan_length - 1);
/* Set up scan channels */
for (int channel = 0; channel < NUM_ADC_CHANNELS; channel++) {
if (sequence->channels & (0x1 << channel)) {
ADC_SetScanChannel(base,
data->scan_length - num_channels--,
data->channel_sources[channel]);
}
}
/* Set resolution of ADC */
base->ADC_REG_ANA &= ~ADC_ADC_REG_ANA_RES_SEL_MASK;
/* odd numbers are for differential channels */
if (sequence->resolution == 12 || sequence->resolution == 11) {
base->ADC_REG_ANA |= ADC_ADC_REG_ANA_RES_SEL(kADC_Resolution12Bit);
} else if (sequence->resolution == 14 || sequence->resolution == 13) {
base->ADC_REG_ANA |= ADC_ADC_REG_ANA_RES_SEL(kADC_Resolution14Bit);
} else if (sequence->resolution == 16 || sequence->resolution == 15) {
base->ADC_REG_ANA |= ADC_ADC_REG_ANA_RES_SEL(kADC_Resolution16Bit);
} else {
LOG_ERR("Invalid resolution");
return -EINVAL;
}
/* Set oversampling */
base->ADC_REG_CONFIG &= ~ADC_ADC_REG_CONFIG_AVG_SEL_MASK;
if (sequence->oversampling == 0) {
base->ADC_REG_CONFIG |= ADC_ADC_REG_CONFIG_AVG_SEL(kADC_AverageNone);
} else if (sequence->oversampling == 1) {
base->ADC_REG_CONFIG |= ADC_ADC_REG_CONFIG_AVG_SEL(kADC_Average2);
} else if (sequence->oversampling == 2) {
base->ADC_REG_CONFIG |= ADC_ADC_REG_CONFIG_AVG_SEL(kADC_Average4);
} else if (sequence->oversampling == 3) {
base->ADC_REG_CONFIG |= ADC_ADC_REG_CONFIG_AVG_SEL(kADC_Average8);
} else if (sequence->oversampling == 4) {
base->ADC_REG_CONFIG |= ADC_ADC_REG_CONFIG_AVG_SEL(kADC_Average16);
} else {
LOG_ERR("Invalid oversampling setting");
return -EINVAL;
}
/* Calibrate if requested */
if (sequence->calibrate) {
if (ADC_DoAutoCalibration(base, config->cal_volt)) {
LOG_WRN("Calibration of ADC failed!");
}
}
data->results = sequence->buffer;
data->results_length = sequence->buffer_size;
data->repeat = sequence->buffer;
adc_context_start_read(&data->ctx, sequence);
return adc_context_wait_for_completion(&data->ctx);
}
static int mcux_gau_adc_read(const struct device *dev,
const struct adc_sequence *sequence)
{
struct mcux_gau_adc_data *data = dev->data;
int error;
adc_context_lock(&data->ctx, false, NULL);
error = mcux_gau_adc_do_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
#ifdef CONFIG_ADC_ASYNC
static int mcux_gau_adc_read_async(const struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
struct mcux_gau_adc_data *data = dev->data;
int error;
adc_context_lock(&data->ctx, true, async);
error = mcux_gau_adc_do_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
#endif
static int mcux_gau_adc_init(const struct device *dev)
{
const struct mcux_gau_adc_config *config = dev->config;
struct mcux_gau_adc_data *data = dev->data;
ADC_Type *base = config->base;
adc_config_t adc_config;
data->dev = dev;
LOG_DBG("Initializing ADC");
ADC_GetDefaultConfig(&adc_config);
/* DT configs */
adc_config.clockDivider = config->clock_div;
adc_config.powerMode = config->power_mode;
adc_config.enableInputGainBuffer = config->input_gain_buffer;
adc_config.triggerSource = kADC_TriggerSourceSoftware;
adc_config.inputMode = kADC_InputSingleEnded;
/* One shot meets the needs of the current zephyr adc context/api */
adc_config.conversionMode = kADC_ConversionOneShot;
/* since using one shot mode, just interrupt on one sample (agnostic to # channels) */
adc_config.fifoThreshold = kADC_FifoThresholdData1;
/* 32 bit width not supported in this driver; zephyr seems to use 16 bit */
adc_config.resultWidth = kADC_ResultWidth16;
adc_config.enableDMA = false;
adc_config.enableADC = true;
ADC_Init(base, &adc_config);
if (ADC_DoAutoCalibration(base, config->cal_volt)) {
LOG_WRN("Calibration of ADC failed!");
}
ADC_ClearStatusFlags(base, kADC_DataReadyInterruptFlag);
config->irq_config_func(dev);
ADC_EnableInterrupts(base, kADC_DataReadyInterruptEnable);
k_work_init(&data->read_samples_work, &mcux_gau_adc_read_samples);
adc_context_init(&data->ctx);
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
static const struct adc_driver_api mcux_gau_adc_driver_api = {
.channel_setup = mcux_gau_adc_channel_setup,
.read = mcux_gau_adc_read,
#ifdef CONFIG_ADC_ASYNC
.read_async = mcux_gau_adc_read_async,
#endif
.ref_internal = 1200,
};
#define GAU_ADC_MCUX_INIT(n) \
\
static void mcux_gau_adc_config_func_##n(const struct device *dev); \
\
static const struct mcux_gau_adc_config mcux_gau_adc_config_##n = { \
.base = (ADC_Type *)DT_INST_REG_ADDR(n), \
.irq_config_func = mcux_gau_adc_config_func_##n, \
/* Minus one because DT starts at 1, HAL enum starts at 0 */ \
.clock_div = DT_INST_PROP(n, nxp_clock_divider) - 1, \
.power_mode = DT_INST_ENUM_IDX(n, nxp_power_mode), \
.input_gain_buffer = DT_INST_PROP(n, nxp_input_buffer), \
.cal_volt = DT_INST_ENUM_IDX(n, nxp_calibration_voltage), \
}; \
\
static struct mcux_gau_adc_data mcux_gau_adc_data_##n = {0}; \
\
DEVICE_DT_INST_DEFINE(n, &mcux_gau_adc_init, NULL, \
&mcux_gau_adc_data_##n, &mcux_gau_adc_config_##n, \
POST_KERNEL, CONFIG_ADC_INIT_PRIORITY, \
&mcux_gau_adc_driver_api); \
\
static void mcux_gau_adc_config_func_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \
mcux_gau_adc_isr, DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQN(n)); \
}
DT_INST_FOREACH_STATUS_OKAY(GAU_ADC_MCUX_INIT)