zephyr/drivers/flash/flash_stm32h7x.c

698 lines
17 KiB
C

/*
* Copyright (c) 2020 Vossloh Cogifer
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT st_stm32h7_flash_controller
#include <sys/util.h>
#include <kernel.h>
#include <device.h>
#include <string.h>
#include <drivers/flash.h>
#include <init.h>
#include <soc.h>
#include <stm32h7xx_ll_bus.h>
#include <stm32h7xx_ll_utils.h>
#include "flash_stm32.h"
#include "stm32_hsem.h"
#define LOG_DOMAIN flash_stm32h7
#define LOG_LEVEL CONFIG_FLASH_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(LOG_DOMAIN);
#define STM32H7_FLASH_MAX_ERASE_TIME 4000
/* Let's wait for double the max erase time to be sure that the operation is
* completed.
*/
#define STM32H7_FLASH_TIMEOUT (2 * STM32H7_FLASH_MAX_ERASE_TIME)
#ifdef CONFIG_CPU_CORTEX_M4
#error Flash driver on M4 core is not supported yet
#endif
#define REAL_FLASH_SIZE_KB KB(LL_GetFlashSize())
#define SECTOR_PER_BANK ((REAL_FLASH_SIZE_KB / FLASH_SECTOR_SIZE) / 2)
#if defined(DUAL_BANK)
#define STM32H7_SERIES_MAX_FLASH_KB KB(2048)
#define BANK2_OFFSET (STM32H7_SERIES_MAX_FLASH_KB / 2)
/* When flash is dual bank and flash size is smaller than Max flash size of
* the serie, there is a discontinuty between bank1 and bank2.
*/
#define DISCONTINUOUS_BANKS (REAL_FLASH_SIZE_KB < STM32H7_SERIES_MAX_FLASH_KB)
#endif
struct flash_stm32_sector_t {
int sector_index;
int bank;
volatile uint32_t *cr;
volatile uint32_t *sr;
};
#if defined(CONFIG_MULTITHREADING) || defined(CONFIG_STM32H7_DUAL_CORE)
/*
* This is named flash_stm32_sem_take instead of flash_stm32_lock (and
* similarly for flash_stm32_sem_give) to avoid confusion with locking
* actual flash sectors.
*/
static inline void _flash_stm32_sem_take(const struct device *dev)
{
k_sem_take(&FLASH_STM32_PRIV(dev)->sem, K_FOREVER);
z_stm32_hsem_lock(CFG_HW_FLASH_SEMID, HSEM_LOCK_WAIT_FOREVER);
}
static inline void _flash_stm32_sem_give(const struct device *dev)
{
z_stm32_hsem_unlock(CFG_HW_FLASH_SEMID);
k_sem_give(&FLASH_STM32_PRIV(dev)->sem);
}
#define flash_stm32_sem_init(dev) k_sem_init(&FLASH_STM32_PRIV(dev)->sem, 1, 1)
#define flash_stm32_sem_take(dev) _flash_stm32_sem_take(dev)
#define flash_stm32_sem_give(dev) _flash_stm32_sem_give(dev)
#else
#define flash_stm32_sem_init(dev)
#define flash_stm32_sem_take(dev)
#define flash_stm32_sem_give(dev)
#endif
bool flash_stm32_valid_range(const struct device *dev, off_t offset,
uint32_t len,
bool write)
{
#if defined(DUAL_BANK)
if (DISCONTINUOUS_BANKS) {
/*
* In case of bank1/2 discontinuity, the range should not
* start before bank2 and end beyond bank1 at the same time.
* Locations beyond bank2 are caught by flash_stm32_range_exists
*/
if ((offset < BANK2_OFFSET)
&& (offset + len > REAL_FLASH_SIZE_KB / 2)) {
LOG_ERR("Range ovelaps flash bank discontinuity");
return false;
}
}
#endif
if (write) {
if ((offset % (FLASH_NB_32BITWORD_IN_FLASHWORD * 4)) != 0) {
LOG_ERR("Write offset not aligned on flashword length. "
"Offset: 0x%lx, flashword length: %d",
(unsigned long) offset, FLASH_NB_32BITWORD_IN_FLASHWORD * 4);
return false;
}
}
return flash_stm32_range_exists(dev, offset, len);
}
static int flash_stm32_check_status(const struct device *dev)
{
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
/* The hardware corrects single ECC errors and detects double
* ECC errors. Corrected data is returned for single ECC
* errors, so in this case we just log a warning.
*/
uint32_t const error_bank1 = (FLASH_FLAG_ALL_ERRORS_BANK1
& ~FLASH_FLAG_SNECCERR_BANK1);
#ifdef DUAL_BANK
uint32_t const error_bank2 = (FLASH_FLAG_ALL_ERRORS_BANK2
& ~FLASH_FLAG_SNECCERR_BANK2);
#endif
uint32_t sr;
/* Read the status flags. */
sr = regs->SR1;
if (sr & (FLASH_FLAG_SNECCERR_BANK1|FLASH_FLAG_DBECCERR_BANK1)) {
uint32_t word = regs->ECC_FA1 & FLASH_ECC_FA_FAIL_ECC_ADDR;
LOG_WRN("Bank%d ECC error at 0x%08x", 1,
word * 4 * FLASH_NB_32BITWORD_IN_FLASHWORD);
}
/* Clear the flags (including FA1R) */
regs->CCR1 = FLASH_FLAG_ALL_BANK1;
if (sr & error_bank1) {
LOG_ERR("Status Bank%d: 0x%08x", 1, sr);
return -EIO;
}
#ifdef DUAL_BANK
sr = regs->SR2;
if (sr & (FLASH_FLAG_SNECCERR_BANK1|FLASH_FLAG_DBECCERR_BANK1)) {
uint32_t word = regs->ECC_FA2 & FLASH_ECC_FA_FAIL_ECC_ADDR;
LOG_WRN("Bank%d ECC error at 0x%08x", 2,
word * 4 * FLASH_NB_32BITWORD_IN_FLASHWORD);
}
regs->CCR2 = FLASH_FLAG_ALL_BANK2;
if (sr & error_bank2) {
LOG_ERR("Status Bank%d: 0x%08x", 2, sr);
return -EIO;
}
#endif
return 0;
}
int flash_stm32_wait_flash_idle(const struct device *dev)
{
int64_t timeout_time = k_uptime_get() + STM32H7_FLASH_TIMEOUT;
int rc;
rc = flash_stm32_check_status(dev);
if (rc < 0) {
return -EIO;
}
#ifdef DUAL_BANK
while ((FLASH_STM32_REGS(dev)->SR1 & FLASH_SR_QW)
|| (FLASH_STM32_REGS(dev)->SR2 & FLASH_SR_QW))
#else
while (FLASH_STM32_REGS(dev)->SR1 & FLASH_SR_QW)
#endif
{
if (k_uptime_get() > timeout_time) {
LOG_ERR("Timeout! val: %d", STM32H7_FLASH_TIMEOUT);
return -EIO;
}
}
return 0;
}
static struct flash_stm32_sector_t get_sector(const struct device *dev,
off_t offset)
{
struct flash_stm32_sector_t sector;
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
#ifdef DUAL_BANK
bool bank_swap;
/* Check whether bank1/2 are swapped */
bank_swap = (READ_BIT(FLASH->OPTCR, FLASH_OPTCR_SWAP_BANK)
== FLASH_OPTCR_SWAP_BANK);
sector.sector_index = offset / FLASH_SECTOR_SIZE;
if ((offset < (REAL_FLASH_SIZE_KB / 2)) && !bank_swap) {
sector.bank = 1;
sector.cr = &regs->CR1;
sector.sr = &regs->SR1;
} else if ((offset >= BANK2_OFFSET) && bank_swap) {
sector.sector_index -= BANK2_OFFSET / FLASH_SECTOR_SIZE;
sector.bank = 1;
sector.cr = &regs->CR2;
sector.sr = &regs->SR2;
} else if ((offset < (REAL_FLASH_SIZE_KB / 2)) && bank_swap) {
sector.bank = 2;
sector.cr = &regs->CR1;
sector.sr = &regs->SR1;
} else if ((offset >= BANK2_OFFSET) && !bank_swap) {
sector.sector_index -= BANK2_OFFSET / FLASH_SECTOR_SIZE;
sector.bank = 2;
sector.cr = &regs->CR2;
sector.sr = &regs->SR2;
} else {
sector.sector_index = 0;
sector.bank = 0;
sector.cr = NULL;
sector.sr = NULL;
}
#else
if (offset < REAL_FLASH_SIZE_KB) {
sector.sector_index = offset / FLASH_SECTOR_SIZE;
sector.bank = 1;
sector.cr = &regs->CR1;
sector.sr = &regs->SR1;
} else {
sector.sector_index = 0;
sector.bank = 0;
sector.cr = NULL;
sector.sr = NULL;
}
#endif
return sector;
}
static int erase_sector(const struct device *dev, int offset)
{
int rc;
uint32_t tmp;
struct flash_stm32_sector_t sector = get_sector(dev, offset);
if (sector.bank == 0) {
LOG_ERR("Offset %ld does not exist", (long) offset);
return -EINVAL;
}
/* if the control register is locked, do not fail silently */
if (*(sector.cr) & FLASH_CR_LOCK) {
return -EIO;
}
rc = flash_stm32_wait_flash_idle(dev);
if (rc < 0) {
return rc;
}
*(sector.cr) &= ~FLASH_CR_SNB;
*(sector.cr) |= (FLASH_CR_SER
| ((sector.sector_index << FLASH_CR_SNB_Pos) & FLASH_CR_SNB));
*(sector.cr) |= FLASH_CR_START;
/* flush the register write */
tmp = *(sector.cr);
rc = flash_stm32_wait_flash_idle(dev);
*(sector.cr) &= ~(FLASH_CR_SER | FLASH_CR_SNB);
return rc;
}
int flash_stm32_block_erase_loop(const struct device *dev,
unsigned int offset,
unsigned int len)
{
unsigned int address = offset;
int rc = 0;
for (; address <= offset + len - 1 ; address += FLASH_SECTOR_SIZE) {
rc = erase_sector(dev, address);
if (rc < 0) {
break;
}
}
return rc;
}
static int wait_write_queue(const struct device *dev, off_t offset)
{
int64_t timeout_time = k_uptime_get() + 100;
struct flash_stm32_sector_t sector = get_sector(dev, offset);
if (sector.bank == 0) {
LOG_ERR("Offset %ld does not exist", (long) offset);
return -EINVAL;
}
while (*(sector.sr) & FLASH_SR_QW) {
if (k_uptime_get() > timeout_time) {
LOG_ERR("Timeout! val: %d", 100);
return -EIO;
}
}
return 0;
}
static int write_ndwords(const struct device *dev,
off_t offset, const uint64_t *data,
uint8_t n)
{
volatile uint64_t *flash = (uint64_t *)(offset
+ CONFIG_FLASH_BASE_ADDRESS);
uint32_t tmp;
int rc;
int i;
struct flash_stm32_sector_t sector = get_sector(dev, offset);
if (sector.bank == 0) {
LOG_ERR("Offset %ld does not exist", (long) offset);
return -EINVAL;
}
/* if the control register is locked, do not fail silently */
if (*(sector.cr) & FLASH_CR_LOCK) {
return -EIO;
}
/* Check that no Flash main memory operation is ongoing */
rc = flash_stm32_wait_flash_idle(dev);
if (rc < 0) {
return rc;
}
/* Check if 256 bits location is erased */
for (i = 0; i < n; ++i) {
if (flash[i] != 0xFFFFFFFFFFFFFFFFUL) {
return -EIO;
}
}
/* Set the PG bit */
*(sector.cr) |= FLASH_CR_PG;
/* Flush the register write */
tmp = *(sector.cr);
/* Perform the data write operation at the desired memory address */
for (i = 0; i < n; ++i) {
flash[i] = data[i];
wait_write_queue(dev, offset);
}
/* Wait until the BSY bit is cleared */
rc = flash_stm32_wait_flash_idle(dev);
/* Clear the PG bit */
*(sector.cr) &= (~FLASH_CR_PG);
return rc;
}
int flash_stm32_write_range(const struct device *dev, unsigned int offset,
const void *data, unsigned int len)
{
int rc = 0;
int i, j;
const uint8_t ndwords = FLASH_NB_32BITWORD_IN_FLASHWORD / 2;
const uint8_t nbytes = FLASH_NB_32BITWORD_IN_FLASHWORD * 4;
uint8_t unaligned_datas[nbytes];
for (i = 0; i < len && i + 32 <= len; i += 32, offset += 32U) {
rc = write_ndwords(dev, offset,
(const uint64_t *) data + (i >> 3),
ndwords);
if (rc < 0) {
return rc;
}
}
/* Handle the remaining bytes if length is not aligned on
* FLASH_NB_32BITWORD_IN_FLASHWORD
*/
if (i < len) {
memset(unaligned_datas, 0xff, sizeof(unaligned_datas));
for (j = 0; j < len - i; ++j) {
unaligned_datas[j] = ((uint8_t *)data)[i + j];
}
rc = write_ndwords(dev, offset,
(const uint64_t *)unaligned_datas,
ndwords);
if (rc < 0) {
return rc;
}
}
return rc;
}
static int flash_stm32h7_write_protection(const struct device *dev, bool enable)
{
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
int rc = 0;
if (enable) {
rc = flash_stm32_wait_flash_idle(dev);
if (rc) {
return rc;
}
}
/* Bank 1 */
if (enable) {
regs->CR1 |= FLASH_CR_LOCK;
} else {
if (regs->CR1 & FLASH_CR_LOCK) {
regs->KEYR1 = FLASH_KEY1;
regs->KEYR1 = FLASH_KEY2;
}
}
#ifdef DUAL_BANK
/* Bank 2 */
if (enable) {
regs->CR2 |= FLASH_CR_LOCK;
} else {
if (regs->CR2 & FLASH_CR_LOCK) {
regs->KEYR2 = FLASH_KEY1;
regs->KEYR2 = FLASH_KEY2;
}
}
#endif
if (enable) {
LOG_DBG("Enable write protection");
} else {
LOG_DBG("Disable write protection");
}
return rc;
}
#ifdef CONFIG_CPU_CORTEX_M7
static void flash_stm32h7_flush_caches(const struct device *dev,
off_t offset, size_t len)
{
ARG_UNUSED(dev);
SCB_InvalidateDCache_by_Addr((uint32_t *)(CONFIG_FLASH_BASE_ADDRESS
+ offset), len);
}
#endif /* CONFIG_CPU_CORTEX_M7 */
static int flash_stm32h7_erase(const struct device *dev, off_t offset,
size_t len)
{
int rc, rc2;
#ifdef CONFIG_CPU_CORTEX_M7
/* Flush whole sectors */
off_t flush_offset = ROUND_DOWN(offset, FLASH_SECTOR_SIZE);
size_t flush_len = ROUND_UP(offset + len - 1, FLASH_SECTOR_SIZE)
- flush_offset;
#endif /* CONFIG_CPU_CORTEX_M7 */
if (!flash_stm32_valid_range(dev, offset, len, true)) {
LOG_ERR("Erase range invalid. Offset: %ld, len: %zu",
(long) offset, len);
return -EINVAL;
}
if (!len) {
return 0;
}
flash_stm32_sem_take(dev);
LOG_DBG("Erase offset: %ld, len: %zu", (long) offset, len);
rc = flash_stm32h7_write_protection(dev, false);
if (rc) {
goto done;
}
rc = flash_stm32_block_erase_loop(dev, offset, len);
#ifdef CONFIG_CPU_CORTEX_M7
/* Flush cache on all sectors affected by the erase */
flash_stm32h7_flush_caches(dev, flush_offset, flush_len);
#elif CONFIG_CPU_CORTEX_M4
if (LL_AHB1_GRP1_IsEnabledClock(LL_AHB1_GRP1_PERIPH_ART)
&& LL_ART_IsEnabled()) {
LOG_ERR("Cortex M4: ART enabled not supported by flash driver");
}
#endif /* CONFIG_CPU_CORTEX_M7 */
done:
rc2 = flash_stm32h7_write_protection(dev, true);
if (!rc) {
rc = rc2;
}
flash_stm32_sem_give(dev);
return rc;
}
static int flash_stm32h7_write(const struct device *dev, off_t offset,
const void *data, size_t len)
{
int rc;
if (!flash_stm32_valid_range(dev, offset, len, true)) {
LOG_ERR("Write range invalid. Offset: %ld, len: %zu",
(long) offset, len);
return -EINVAL;
}
if (!len) {
return 0;
}
flash_stm32_sem_take(dev);
LOG_DBG("Write offset: %ld, len: %zu", (long) offset, len);
rc = flash_stm32h7_write_protection(dev, false);
if (!rc) {
rc = flash_stm32_write_range(dev, offset, data, len);
}
int rc2 = flash_stm32h7_write_protection(dev, true);
if (!rc) {
rc = rc2;
}
flash_stm32_sem_give(dev);
return rc;
}
static int flash_stm32h7_read(const struct device *dev, off_t offset,
void *data,
size_t len)
{
if (!flash_stm32_valid_range(dev, offset, len, false)) {
LOG_ERR("Read range invalid. Offset: %ld, len: %zu",
(long) offset, len);
return -EINVAL;
}
if (!len) {
return 0;
}
LOG_DBG("Read offset: %ld, len: %zu", (long) offset, len);
/* During the read we mask bus errors and only allow NMI.
*
* If the flash has a double ECC error then there is normally
* a bus fault, but we want to return an error code instead.
*/
unsigned int irq_lock_key = irq_lock();
__set_FAULTMASK(1);
SCB->CCR |= SCB_CCR_BFHFNMIGN_Msk;
__DSB();
__ISB();
memcpy(data, (uint8_t *) CONFIG_FLASH_BASE_ADDRESS + offset, len);
__set_FAULTMASK(0);
SCB->CCR &= ~SCB_CCR_BFHFNMIGN_Msk;
__DSB();
__ISB();
irq_unlock(irq_lock_key);
return flash_stm32_check_status(dev);
}
static const struct flash_parameters flash_stm32h7_parameters = {
.write_block_size = FLASH_STM32_WRITE_BLOCK_SIZE,
.erase_value = 0xff,
};
static const struct flash_parameters *
flash_stm32h7_get_parameters(const struct device *dev)
{
ARG_UNUSED(dev);
return &flash_stm32h7_parameters;
}
void flash_stm32_page_layout(const struct device *dev,
const struct flash_pages_layout **layout,
size_t *layout_size)
{
ARG_UNUSED(dev);
#if defined(DUAL_BANK)
static struct flash_pages_layout stm32h7_flash_layout[3];
if (DISCONTINUOUS_BANKS) {
if (stm32h7_flash_layout[0].pages_count == 0) {
/* Bank1 */
stm32h7_flash_layout[0].pages_count = SECTOR_PER_BANK;
stm32h7_flash_layout[0].pages_size = FLASH_SECTOR_SIZE;
/*
* Dummy page corresponding to discontinuity
* between bank1/2
*/
stm32h7_flash_layout[1].pages_count = 1;
stm32h7_flash_layout[1].pages_size = BANK2_OFFSET
- (SECTOR_PER_BANK * FLASH_SECTOR_SIZE);
/* Bank2 */
stm32h7_flash_layout[2].pages_count = SECTOR_PER_BANK;
stm32h7_flash_layout[2].pages_size = FLASH_SECTOR_SIZE;
}
*layout_size = ARRAY_SIZE(stm32h7_flash_layout);
} else {
if (stm32h7_flash_layout[0].pages_count == 0) {
stm32h7_flash_layout[0].pages_count =
REAL_FLASH_SIZE_KB / FLASH_SECTOR_SIZE;
stm32h7_flash_layout[0].pages_size = FLASH_SECTOR_SIZE;
}
*layout_size = 1;
}
#else
static struct flash_pages_layout stm32h7_flash_layout[1];
if (stm32h7_flash_layout[0].pages_count == 0) {
stm32h7_flash_layout[0].pages_count =
REAL_FLASH_SIZE_KB / FLASH_SECTOR_SIZE;
stm32h7_flash_layout[0].pages_size = FLASH_SECTOR_SIZE;
}
*layout_size = ARRAY_SIZE(stm32h7_flash_layout);
#endif
*layout = stm32h7_flash_layout;
}
static struct flash_stm32_priv flash_data = {
.regs = (FLASH_TypeDef *) DT_INST_REG_ADDR(0),
.pclken = { .bus = DT_INST_CLOCKS_CELL(0, bus),
.enr = DT_INST_CLOCKS_CELL(0, bits)},
};
static const struct flash_driver_api flash_stm32h7_api = {
.erase = flash_stm32h7_erase,
.write = flash_stm32h7_write,
.read = flash_stm32h7_read,
.get_parameters = flash_stm32h7_get_parameters,
#ifdef CONFIG_FLASH_PAGE_LAYOUT
.page_layout = flash_stm32_page_layout,
#endif
};
static int stm32h7_flash_init(const struct device *dev)
{
struct flash_stm32_priv *p = FLASH_STM32_PRIV(dev);
const struct device *clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
/* enable clock */
if (clock_control_on(clk, (clock_control_subsys_t *)&p->pclken) != 0) {
LOG_ERR("Failed to enable clock");
return -EIO;
}
flash_stm32_sem_init(dev);
LOG_DBG("Flash initialized. BS: %zu",
flash_stm32h7_parameters.write_block_size);
#if ((CONFIG_FLASH_LOG_LEVEL >= LOG_LEVEL_DBG) && CONFIG_FLASH_PAGE_LAYOUT)
const struct flash_pages_layout *layout;
size_t layout_size;
flash_stm32_page_layout(dev, &layout, &layout_size);
for (size_t i = 0; i < layout_size; i++) {
LOG_DBG("Block %zu: bs: %zu count: %zu", i,
layout[i].pages_size, layout[i].pages_count);
}
#endif
return flash_stm32h7_write_protection(dev, false);
}
DEVICE_DT_INST_DEFINE(0, stm32h7_flash_init, NULL,
&flash_data, NULL, POST_KERNEL,
CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &flash_stm32h7_api);