zephyr/drivers/gpio/gpio_esp32.c

365 lines
7.6 KiB
C

/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
/* Include esp-idf headers first to avoid redefining BIT() macro */
#include <soc/dport_reg.h>
#include <soc/gpio_reg.h>
#include <soc/io_mux_reg.h>
#include <soc/soc.h>
#include <soc.h>
#include <errno.h>
#include <device.h>
#include <gpio.h>
#include <kernel.h>
#include <misc/util.h>
#include <pinmux.h>
#include "gpio_utils.h"
struct gpio_esp32_data {
struct device *pinmux;
struct {
struct {
volatile u32_t *set_reg;
volatile u32_t *clear_reg;
} write;
struct {
volatile u32_t *reg;
} read;
struct {
volatile u32_t *status_reg;
volatile u32_t *ack_reg;
} irq;
int pin_offset;
} port;
u32_t cb_pins;
sys_slist_t cb;
};
static int convert_int_type(int flags)
{
/* Reference: "ESP32 Technical Reference Manual", "IO_MUX and
* GPIO matrix"; "GPIO_PINn_INT_TYPE".
*/
if (!(flags & GPIO_INT)) {
return 0; /* Disables interrupt for a pin. */
}
if ((flags & GPIO_INT_EDGE) == GPIO_INT_EDGE) {
if ((flags & GPIO_INT_ACTIVE_HIGH) == GPIO_INT_ACTIVE_HIGH) {
return 1;
}
if ((flags & GPIO_INT_DOUBLE_EDGE) == GPIO_INT_DOUBLE_EDGE) {
return 3;
}
return 2; /* Defaults to falling edge. */
}
if ((flags & GPIO_INT_EDGE) == GPIO_INT_LEVEL) {
if ((flags & GPIO_INT_ACTIVE_HIGH) == GPIO_INT_ACTIVE_HIGH) {
return 5;
}
return 4; /* Defaults to low level. */
}
/* Any other type of interrupt triggering is invalid. */
return -EINVAL;
}
static inline u32_t *gpio_pin_reg(int pin)
{
return (u32_t *)(GPIO_PIN0_REG + pin * 4);
}
static int config_interrupt(u32_t pin, int flags)
{
volatile u32_t *reg = gpio_pin_reg(pin);
int type = convert_int_type(flags);
u32_t v;
unsigned int key;
if (type < 0) {
return type;
}
key = irq_lock();
v = *reg;
v &= ~(GPIO_PIN_INT_ENA_M | GPIO_PIN_INT_TYPE_M);
/* Bit 3 of INT_ENA will enable interrupts on CPU 0 */
v |= (1<<2) << GPIO_PIN_INT_ENA_S;
/* Interrupt triggering mode */
v |= type << GPIO_PIN_INT_TYPE_S;
*reg = v;
irq_unlock(key);
return 0;
}
static void config_polarity(u32_t pin, int flags)
{
volatile u32_t *reg = (u32_t *)(GPIO_FUNC0_IN_SEL_CFG_REG + 4 * pin);
if (flags & GPIO_POL_INV) {
*reg |= BIT(GPIO_FUNC0_IN_INV_SEL_S);
} else {
*reg &= ~BIT(GPIO_FUNC0_IN_INV_SEL_S);
}
}
static void config_drive_strength(u32_t pin, int flags)
{
volatile u32_t *reg = gpio_pin_reg(pin);
if ((flags & GPIO_DS_DISCONNECT_LOW) == GPIO_DS_DISCONNECT_LOW) {
*reg |= GPIO_PIN_PAD_DRIVER;
} else {
*reg &= ~GPIO_PIN_PAD_DRIVER;
}
}
static int gpio_esp32_config(struct device *dev, int access_op,
u32_t pin, int flags)
{
struct gpio_esp32_data *data = dev->driver_data;
u32_t func;
int r;
if (access_op != GPIO_ACCESS_BY_PIN) {
return -ENOTSUP;
}
/* Query pinmux to validate pin number. */
r = pinmux_pin_get(data->pinmux, pin, &func);
if (r < 0) {
return r;
}
pinmux_pin_set(data->pinmux, pin, PIN_FUNC_GPIO);
if (flags & GPIO_PUD_PULL_UP) {
pinmux_pin_pullup(data->pinmux, pin, PINMUX_PULLUP_ENABLE);
} else if (flags & GPIO_PUD_PULL_DOWN) {
pinmux_pin_pullup(data->pinmux, pin, PINMUX_PULLUP_DISABLE);
}
if (flags & GPIO_DIR_OUT) {
r = pinmux_pin_input_enable(data->pinmux, pin,
PINMUX_OUTPUT_ENABLED);
assert(r >= 0);
} else {
pinmux_pin_input_enable(data->pinmux, pin,
PINMUX_INPUT_ENABLED);
config_polarity(pin, flags);
}
config_drive_strength(pin, flags);
return config_interrupt(pin, flags);
}
static int gpio_esp32_write(struct device *dev, int access_op,
u32_t pin, u32_t value)
{
struct gpio_esp32_data *data = dev->driver_data;
u32_t v;
if (access_op != GPIO_ACCESS_BY_PIN) {
return -ENOTSUP;
}
v = BIT(pin - data->port.pin_offset);
if (value) {
*data->port.write.set_reg = v;
} else {
*data->port.write.clear_reg = v;
}
return 0;
}
static int gpio_esp32_read(struct device *dev, int access_op,
u32_t pin, u32_t *value)
{
struct gpio_esp32_data *data = dev->driver_data;
u32_t v;
if (access_op != GPIO_ACCESS_BY_PIN) {
return -ENOTSUP;
}
v = *data->port.read.reg;
*value = !!(v & BIT(pin - data->port.pin_offset));
return 0;
}
static int gpio_esp32_manage_callback(struct device *dev,
struct gpio_callback *callback,
bool set)
{
struct gpio_esp32_data *data = dev->driver_data;
return _gpio_manage_callback(&data->cb, callback, set);
}
static int gpio_esp32_enable_callback(struct device *dev,
int access_op, u32_t pin)
{
struct gpio_esp32_data *data = dev->driver_data;
if (access_op == GPIO_ACCESS_BY_PIN) {
data->cb_pins |= BIT(pin);
return 0;
}
return -ENOTSUP;
}
static int gpio_esp32_disable_callback(struct device *dev,
int access_op, u32_t pin)
{
struct gpio_esp32_data *data = dev->driver_data;
if (access_op == GPIO_ACCESS_BY_PIN) {
data->cb_pins &= ~BIT(pin);
return 0;
}
return -ENOTSUP;
}
static void gpio_esp32_fire_callbacks(struct device *device)
{
struct gpio_esp32_data *data = device->driver_data;
u32_t values = *data->port.irq.status_reg;
if (values & data->cb_pins) {
_gpio_fire_callbacks(&data->cb, device, values);
}
*data->port.irq.ack_reg = values;
}
static void gpio_esp32_isr(void *param);
static int gpio_esp32_init(struct device *device)
{
struct gpio_esp32_data *data = device->driver_data;
static bool isr_connected;
data->pinmux = device_get_binding(CONFIG_PINMUX_NAME);
if (!data->pinmux) {
return -ENOTSUP;
}
if (!isr_connected) {
irq_disable(CONFIG_GPIO_ESP32_IRQ);
IRQ_CONNECT(CONFIG_GPIO_ESP32_IRQ, 1, gpio_esp32_isr,
NULL, 0);
esp32_rom_intr_matrix_set(0, ETS_GPIO_INTR_SOURCE,
CONFIG_GPIO_ESP32_IRQ);
irq_enable(CONFIG_GPIO_ESP32_IRQ);
isr_connected = true;
}
return 0;
}
static const struct gpio_driver_api gpio_esp32_driver = {
.config = gpio_esp32_config,
.write = gpio_esp32_write,
.read = gpio_esp32_read,
.manage_callback = gpio_esp32_manage_callback,
.enable_callback = gpio_esp32_enable_callback,
.disable_callback = gpio_esp32_disable_callback,
};
#if defined(CONFIG_GPIO_ESP32_0)
static struct gpio_esp32_data gpio_data_pins_0_to_31 = {
.port = {
.write = {
.set_reg = (u32_t *)GPIO_OUT_W1TS_REG,
.clear_reg = (u32_t *)GPIO_OUT_W1TC_REG,
},
.read = {
.reg = (u32_t *)GPIO_IN_REG,
},
.irq = {
.status_reg = (u32_t *)GPIO_STATUS_REG,
.ack_reg = (u32_t *)GPIO_STATUS_W1TC_REG,
},
.pin_offset = 0,
}
};
#endif
#if defined(CONFIG_GPIO_ESP32_1)
static struct gpio_esp32_data gpio_data_pins_32_to_39 = {
.port = {
.write = {
.set_reg = (u32_t *)GPIO_OUT1_W1TS_REG,
.clear_reg = (u32_t *)GPIO_OUT1_W1TC_REG,
},
.read = {
.reg = (u32_t *)GPIO_IN1_REG,
},
.irq = {
.status_reg = (u32_t *)GPIO_STATUS1_REG,
.ack_reg = (u32_t *)GPIO_STATUS1_W1TC_REG,
},
.pin_offset = 32,
}
};
#endif
#define GPIO_DEVICE_INIT(__name, __data_struct_name) \
DEVICE_AND_API_INIT(gpio_esp32_ ## __data_struct_name, \
__name, \
gpio_esp32_init, \
&gpio_data_pins_ ## __data_struct_name, \
NULL, \
POST_KERNEL, \
CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \
&gpio_esp32_driver)
/* GPIOs are divided in two groups for ESP32 because the callback
* API works with 32-bit bitmasks to manage interrupt callbacks,
* and the device has 40 GPIO pins.
*/
#if defined(CONFIG_GPIO_ESP32_0)
GPIO_DEVICE_INIT(CONFIG_GPIO_ESP32_0_NAME, 0_to_31);
#endif
#if defined(CONFIG_GPIO_ESP32_1)
GPIO_DEVICE_INIT(CONFIG_GPIO_ESP32_1_NAME, 32_to_39);
#endif
static void gpio_esp32_isr(void *param)
{
#if defined(CONFIG_GPIO_ESP32_0)
gpio_esp32_fire_callbacks(DEVICE_GET(gpio_esp32_0_to_31));
#endif
#if defined(CONFIG_GPIO_ESP32_1)
gpio_esp32_fire_callbacks(DEVICE_GET(gpio_esp32_32_to_39));
#endif
ARG_UNUSED(param);
}