zephyr/drivers/pci/pci.c

487 lines
12 KiB
C

/*
* Copyright (c) 2013-2014 Wind River Systems, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* @brief PCI probe and information routines
*
* Module implements routines for PCI bus initialization and query.
*
* USAGE
* To use the driver, the platform must define:
* - Numbers of BUSes:
* - PCI_BUS_NUMBERS;
* - Register addresses:
* - PCI_CTRL_ADDR_REG;
* - PCI_CTRL_DATA_REG;
* - pci_pin2irq() - the routine that converts the PCI interrupt pin
* number to IRQ number.
*
* About scanning the PCI buses:
* At every new usage of this API, the code should call pci_bus_scan_init().
* It should own a struct pci_dev_info, filled in with the parameters it is
* interested to look for: class and/or vendor_id/device_id.
*
* Then it can loop on pci_bus_scan() providing a pointer on that structure.
* Such function can be called as long as it returns 1. At every successful
* return of pci_bus_scan() it means the provided structure pointer will have
* been updated with the current scan result which the code might be interested
* in. On pci_bus_scan() returning 0, the code should discard the result and
* stop calling pci_bus_scan(). If it wants to retrieve the result, it will
* have to restart the procedure all over again.
*
* EXAMPLE
* struct pci_dev_info info = {
* .class_type = PCI_CLASS_COMM_CTLR
* };
*
* pci_bus_scan_init();
*
* while (pci_bus_scan(&info)) {
* // do something with "info" which holds a valid result, i.e. some
* // device information matching the PCI class PCI_CLASS_COMM_CTLR
* }
*
* INTERNALS
* The whole logic runs around a structure: struct lookup_data, which exists
* on one instanciation called 'lookup'.
* Such structure is used for 2 distinct roles:
* - to match devices the caller is looking for
* - to loop on PCI bus, devices, function and BARs
*
* The search criterias are the class and/or the vendor_id/device_id of a PCI
* device. The caller first initializes the lookup structure by calling
* pci_bus_scan_init(), which will reset the search criterias as well as the
* loop paramaters to 0. At the very first subsequent call of pci_bus_scan()
* the lookup structure will store the search criterias. Then the loop starts.
* For each bus it will run through each device on which it will loop on each
* function and BARs, as long as the criterias does not match or until it hit
* the limit of bus/dev/functions to scan.
*
* On a successful match, it will stop the loop, fill in the caller's
* pci_dev_info structure with the found device information, and return 1.
* Hopefully, the lookup structure still remembers where it stopped and the
* original search criterias. Thus, when the caller asks to scan again for
* a possible result next, the loop will restart where it stopped.
* That will work as long as there are relevant results found.
*/
#include <nanokernel.h>
#include <arch/cpu.h>
#include <misc/printk.h>
#include <toolchain.h>
#include <sections.h>
#include <board.h>
#include <pci/pci_mgr.h>
#include <pci/pci.h>
#ifdef CONFIG_PCI_ENUMERATION
/* NOTE. These parameters may need to be configurable */
#define LSPCI_MAX_BUS PCI_BUS_NUMBERS /* maximum number of buses to scan */
#define LSPCI_MAX_DEV 32 /* maximum number of devices to scan */
#define LSPCI_MAX_FUNC PCI_MAX_FUNCTIONS /* maximum functions to scan */
#define LSPCI_MAX_REG 64 /* maximum device registers to read */
/* Base Address Register configuration fields */
#define BAR_SPACE(x) ((x) & 0x00000001)
#define BAR_TYPE(x) ((x) & 0x00000006)
#define BAR_TYPE_32BIT 0
#define BAR_TYPE_64BIT 4
#define BAR_PREFETCH(x) (((x) >> 3) & 0x00000001)
#define BAR_ADDR(x) (((x) >> 4) & 0x0fffffff)
#define BAR_IO_MASK(x) ((x) & ~0x3)
#define BAR_MEM_MASK(x) ((x) & ~0xf)
struct lookup_data {
struct pci_dev_info info;
uint32_t bus:9;
uint32_t dev:6;
uint32_t func:4;
uint32_t baridx:3;
uint32_t barofs:3;
uint32_t unused:7;
};
static struct lookup_data __noinit lookup;
/**
*
* @brief Return the configuration for the specified BAR
*
* @return 0 if BAR is implemented, -1 if not.
*/
static inline int pci_bar_config_get(union pci_addr_reg pci_ctrl_addr,
uint32_t *config)
{
uint32_t old_value;
/* save the current setting */
pci_read(DEFAULT_PCI_CONTROLLER,
pci_ctrl_addr,
sizeof(old_value),
&old_value);
/* write to the BAR to see how large it is */
pci_write(DEFAULT_PCI_CONTROLLER,
pci_ctrl_addr,
sizeof(uint32_t),
0xffffffff);
pci_read(DEFAULT_PCI_CONTROLLER,
pci_ctrl_addr,
sizeof(*config),
config);
/* put back the old configuration */
pci_write(DEFAULT_PCI_CONTROLLER,
pci_ctrl_addr,
sizeof(old_value),
old_value);
/* check if this BAR is implemented */
if (*config != 0xffffffff && *config != 0) {
return 0;
}
/* BAR not supported */
return -1;
}
/**
*
* @brief Retrieve the I/O address and IRQ of the specified BAR
*
* @return -1 on error, 0 if 32 bit BAR retrieved or 1 if 64 bit BAR retrieved
*
* NOTE: Routine does not set up parameters for 64 bit BARS, they are ignored.
*/
static inline int pci_bar_params_get(union pci_addr_reg pci_ctrl_addr,
struct pci_dev_info *dev_info,
int max_bars)
{
uint32_t bar_value;
uint32_t bar_config;
uint32_t bar_hival;
uint32_t addr;
uint32_t mask;
pci_ctrl_addr.field.reg = 4 + lookup.barofs;
pci_read(DEFAULT_PCI_CONTROLLER,
pci_ctrl_addr,
sizeof(bar_value),
&bar_value);
if (pci_bar_config_get(pci_ctrl_addr, &bar_config) != 0) {
return -1;
}
if (BAR_SPACE(bar_config) == BAR_SPACE_MEM) {
dev_info->mem_type = BAR_SPACE_MEM;
mask = ~0xf;
if (BAR_TYPE(bar_config) == BAR_TYPE_64BIT) {
/* Last BAR register cannot be 64-bit */
if (++lookup.barofs >= max_bars)
return 1;
/* Make sure the address is accessible */
pci_ctrl_addr.field.reg++;
pci_read(DEFAULT_PCI_CONTROLLER,
pci_ctrl_addr,
sizeof(bar_hival),
&bar_hival);
if (bar_hival)
return 1; /* Inaccessible memory */
}
} else {
dev_info->mem_type = BAR_SPACE_IO;
mask = ~0x3;
}
dev_info->addr = bar_value & mask;
addr = bar_config & mask;
if (addr != 0) {
/* calculate the size of the BAR memory required */
dev_info->size = 1 << (find_lsb_set(addr) - 1);
}
return 0;
}
/**
*
* @brief Scan the specified PCI device for all sub functions
*
* @return 1 if a device has been found, 0 otherwise.
*/
static inline int pci_dev_scan(union pci_addr_reg pci_ctrl_addr,
struct pci_dev_info *dev_info)
{
static union pci_dev pci_dev_header;
uint32_t pci_data;
int max_bars;
/* verify first if there is a valid device at this point */
pci_ctrl_addr.field.func = 0;
pci_read(DEFAULT_PCI_CONTROLLER,
pci_ctrl_addr,
sizeof(pci_data),
&pci_data);
if (pci_data == 0xffffffff) {
return 0;
}
/* scan all the possible functions for this device */
for (; lookup.func < LSPCI_MAX_FUNC;
lookup.baridx = 0, lookup.barofs = 0, lookup.func++) {
if (lookup.info.function != PCI_FUNCTION_ANY &&
lookup.func != lookup.info.function) {
return 0;
}
pci_ctrl_addr.field.func = lookup.func;
if (lookup.func != 0) {
pci_read(DEFAULT_PCI_CONTROLLER,
pci_ctrl_addr,
sizeof(pci_data),
&pci_data);
if (pci_data == 0xffffffff) {
continue;
}
}
/* get the PCI header from the device */
pci_header_get(DEFAULT_PCI_CONTROLLER,
pci_ctrl_addr,
&pci_dev_header);
/*
* Skip a device if its class is specified by the
* caller and does not match
*/
if (lookup.info.class_type &&
pci_dev_header.field.class != lookup.info.class_type) {
continue;
}
if (lookup.info.vendor_id && lookup.info.device_id &&
(lookup.info.vendor_id != pci_dev_header.field.vendor_id ||
lookup.info.device_id != pci_dev_header.field.device_id)) {
continue;
}
/* Get memory and interrupt information */
if ((pci_dev_header.field.hdr_type & 0x7f) == 1) {
max_bars = 2;
} else {
max_bars = PCI_MAX_BARS;
}
for (; lookup.barofs < max_bars;
lookup.baridx++, lookup.barofs++) {
/* Ignore BARs with errors */
if (pci_bar_params_get(pci_ctrl_addr, dev_info,
max_bars) != 0) {
continue;
} else if (lookup.info.bar != PCI_BAR_ANY &&
lookup.baridx != lookup.info.bar) {
continue;
} else {
dev_info->bus = lookup.bus;
dev_info->dev = lookup.dev;
dev_info->vendor_id =
pci_dev_header.field.vendor_id;
dev_info->device_id =
pci_dev_header.field.device_id;
dev_info->class_type =
pci_dev_header.field.class;
dev_info->irq = pci_pin2irq(dev_info->bus,
dev_info->dev,
pci_dev_header.field.interrupt_pin);
dev_info->function = lookup.func;
dev_info->bar = lookup.baridx;
lookup.baridx++;
lookup.barofs++;
if (lookup.barofs >= max_bars) {
lookup.baridx = 0;
lookup.barofs = 0;
}
return 1;
}
}
}
return 0;
}
void pci_bus_scan_init(void)
{
lookup.info.class_type = 0;
lookup.info.vendor_id = 0;
lookup.info.device_id = 0;
lookup.info.function = PCI_FUNCTION_ANY;
lookup.info.bar = PCI_BAR_ANY;
lookup.bus = 0;
lookup.dev = 0;
lookup.func = 0;
lookup.baridx = 0;
lookup.barofs = 0;
}
/**
*
* @brief Scans PCI bus for devices
*
* The routine scans the PCI bus for the devices on criterias provided in the
* given dev_info at first call. Which criterias can be class and/or
* vendor_id/device_id.
*
* @return 1 on success, 0 otherwise. On success, dev_info is filled in with
* currently found device information
*/
int pci_bus_scan(struct pci_dev_info *dev_info)
{
union pci_addr_reg pci_ctrl_addr;
int init_from_dev_info =
!lookup.info.class_type &&
!lookup.info.vendor_id &&
!lookup.info.device_id &&
lookup.info.bar == PCI_BAR_ANY &&
lookup.info.function == PCI_FUNCTION_ANY;
if (init_from_dev_info) {
lookup.info.class_type = dev_info->class_type;
lookup.info.vendor_id = dev_info->vendor_id;
lookup.info.device_id = dev_info->device_id;
lookup.info.function = dev_info->function;
lookup.info.bar = dev_info->bar;
}
/* initialise the PCI controller address register value */
pci_ctrl_addr.value = 0;
if (lookup.info.function != PCI_FUNCTION_ANY) {
lookup.func = lookup.info.function;
}
/* run through the buses and devices */
for (; lookup.bus < LSPCI_MAX_BUS; lookup.bus++) {
for (; (lookup.dev < LSPCI_MAX_DEV); lookup.dev++) {
pci_ctrl_addr.field.bus = lookup.bus;
pci_ctrl_addr.field.device = lookup.dev;
if (pci_dev_scan(pci_ctrl_addr, dev_info)) {
return 1;
}
if (lookup.info.function != PCI_FUNCTION_ANY) {
lookup.func = lookup.info.function;
} else {
lookup.func = 0;
}
}
lookup.dev = 0;
}
return 0;
}
#endif /* CONFIG_PCI_ENUMERATION */
static void pci_set_command_bits(struct pci_dev_info *dev_info, uint32_t bits)
{
union pci_addr_reg pci_ctrl_addr;
uint32_t pci_data;
pci_ctrl_addr.value = 0;
pci_ctrl_addr.field.func = dev_info->function;
pci_ctrl_addr.field.bus = dev_info->bus;
pci_ctrl_addr.field.device = dev_info->dev;
pci_ctrl_addr.field.reg = 1;
#ifdef CONFIG_PCI_DEBUG
printk("pci_set_command_bits 0x%x\n", pci_ctrl_addr.value);
#endif
pci_read(DEFAULT_PCI_CONTROLLER,
pci_ctrl_addr,
sizeof(uint16_t),
&pci_data);
pci_data = pci_data | bits;
pci_write(DEFAULT_PCI_CONTROLLER,
pci_ctrl_addr,
sizeof(uint16_t),
pci_data);
}
void pci_enable_regs(struct pci_dev_info *dev_info)
{
pci_set_command_bits(dev_info, PCI_CMD_MEM_ENABLE);
}
void pci_enable_bus_master(struct pci_dev_info *dev_info)
{
pci_set_command_bits(dev_info, PCI_CMD_MASTER_ENABLE);
}
#ifdef CONFIG_PCI_DEBUG
/**
*
* @brief Show PCI device
*
* Shows the PCI device found provided as parameter.
*
* @return N/A
*/
void pci_show(struct pci_dev_info *dev_info)
{
printk("PCI device:\n");
printk("%u:%u %X:%X class: 0x%X, %u, %u, %s,"
"addrs: 0x%X-0x%X, IRQ %d\n",
dev_info->bus,
dev_info->dev,
dev_info->vendor_id,
dev_info->device_id,
dev_info->class_type,
dev_info->function,
dev_info->bar,
(dev_info->mem_type == BAR_SPACE_MEM) ? "MEM" : "I/O",
(uint32_t)dev_info->addr,
(uint32_t)(dev_info->addr + dev_info->size - 1),
dev_info->irq);
}
#endif /* CONFIG_PCI_DEBUG */