zephyr/subsys/pm/pm.c

314 lines
8.2 KiB
C

/*
* Copyright (c) 2018 Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/device.h>
#include <zephyr/kernel.h>
#include <zephyr/timeout_q.h>
#include <zephyr/init.h>
#include <string.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/device_runtime.h>
#include <zephyr/pm/pm.h>
#include <zephyr/pm/state.h>
#include <zephyr/pm/policy.h>
#include <zephyr/tracing/tracing.h>
#include "pm_stats.h"
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(pm, CONFIG_PM_LOG_LEVEL);
#define CURRENT_CPU \
(COND_CODE_1(CONFIG_SMP, (arch_curr_cpu()->id), (_current_cpu->id)))
static ATOMIC_DEFINE(z_post_ops_required, CONFIG_MP_MAX_NUM_CPUS);
static sys_slist_t pm_notifiers = SYS_SLIST_STATIC_INIT(&pm_notifiers);
/*
* Properly initialize cpu power states. Do not make assumptions that
* ACTIVE_STATE is 0
*/
#define CPU_PM_STATE_INIT(_, __) \
{ .state = PM_STATE_ACTIVE }
static struct pm_state_info z_cpus_pm_state[] = {
LISTIFY(CONFIG_MP_MAX_NUM_CPUS, CPU_PM_STATE_INIT, (,))
};
static struct pm_state_info z_cpus_pm_forced_state[] = {
LISTIFY(CONFIG_MP_MAX_NUM_CPUS, CPU_PM_STATE_INIT, (,))
};
static struct k_spinlock pm_forced_state_lock;
#if defined(CONFIG_PM_DEVICE) && !defined(CONFIG_PM_DEVICE_RUNTIME_EXCLUSIVE)
static atomic_t z_cpus_active = ATOMIC_INIT(CONFIG_MP_MAX_NUM_CPUS);
#endif
static struct k_spinlock pm_notifier_lock;
#ifdef CONFIG_PM_DEVICE
extern const struct device *__pm_device_slots_start[];
#if !defined(CONFIG_PM_DEVICE_RUNTIME_EXCLUSIVE)
/* Number of devices successfully suspended. */
static size_t num_susp;
static int pm_suspend_devices(void)
{
const struct device *devs;
size_t devc;
devc = z_device_get_all_static(&devs);
num_susp = 0;
for (const struct device *dev = devs + devc - 1; dev >= devs; dev--) {
int ret;
/*
* ignore busy devices, wake up source and devices with
* runtime PM enabled.
*/
if (pm_device_is_busy(dev) || pm_device_state_is_locked(dev)
|| pm_device_wakeup_is_enabled(dev) ||
((dev->pm != NULL) && pm_device_runtime_is_enabled(dev))) {
continue;
}
ret = pm_device_action_run(dev, PM_DEVICE_ACTION_SUSPEND);
/* ignore devices not supporting or already at the given state */
if ((ret == -ENOSYS) || (ret == -ENOTSUP) || (ret == -EALREADY)) {
continue;
} else if (ret < 0) {
LOG_ERR("Device %s did not enter %s state (%d)",
dev->name,
pm_device_state_str(PM_DEVICE_STATE_SUSPENDED),
ret);
return ret;
}
__pm_device_slots_start[num_susp] = dev;
num_susp++;
}
return 0;
}
static void pm_resume_devices(void)
{
for (int i = (num_susp - 1); i >= 0; i--) {
pm_device_action_run(__pm_device_slots_start[i],
PM_DEVICE_ACTION_RESUME);
}
num_susp = 0;
}
#endif /* !CONFIG_PM_DEVICE_RUNTIME_EXCLUSIVE */
#endif /* CONFIG_PM_DEVICE */
static inline void pm_exit_pos_ops(struct pm_state_info *info)
{
extern __weak void
pm_state_exit_post_ops(enum pm_state state, uint8_t substate_id);
if (pm_state_exit_post_ops != NULL) {
pm_state_exit_post_ops(info->state, info->substate_id);
} else {
/*
* This function is supposed to be overridden to do SoC or
* architecture specific post ops after sleep state exits.
*
* The kernel expects that irqs are unlocked after this.
*/
irq_unlock(0);
}
}
static inline void state_set(struct pm_state_info *info)
{
extern __weak void
pm_state_set(enum pm_state state, uint8_t substate_id);
if (pm_state_set != NULL) {
pm_state_set(info->state, info->substate_id);
}
}
/*
* Function called to notify when the system is entering / exiting a
* power state
*/
static inline void pm_state_notify(bool entering_state)
{
struct pm_notifier *notifier;
k_spinlock_key_t pm_notifier_key;
void (*callback)(enum pm_state state);
pm_notifier_key = k_spin_lock(&pm_notifier_lock);
SYS_SLIST_FOR_EACH_CONTAINER(&pm_notifiers, notifier, _node) {
if (entering_state) {
callback = notifier->state_entry;
} else {
callback = notifier->state_exit;
}
if (callback) {
callback(z_cpus_pm_state[_current_cpu->id].state);
}
}
k_spin_unlock(&pm_notifier_lock, pm_notifier_key);
}
void pm_system_resume(void)
{
uint8_t id = CURRENT_CPU;
/*
* This notification is called from the ISR of the event
* that caused exit from kernel idling after PM operations.
*
* Some CPU low power states require enabling of interrupts
* atomically when entering those states. The wake up from
* such a state first executes code in the ISR of the interrupt
* that caused the wake. This hook will be called from the ISR.
* For such CPU LPS states, do post operations and restores here.
* The kernel scheduler will get control after the ISR finishes
* and it may schedule another thread.
*/
if (atomic_test_and_clear_bit(z_post_ops_required, id)) {
pm_exit_pos_ops(&z_cpus_pm_state[id]);
pm_state_notify(false);
z_cpus_pm_state[id] = (struct pm_state_info){PM_STATE_ACTIVE,
0, 0};
}
}
bool pm_state_force(uint8_t cpu, const struct pm_state_info *info)
{
k_spinlock_key_t key;
__ASSERT(info->state < PM_STATE_COUNT,
"Invalid power state %d!", info->state);
key = k_spin_lock(&pm_forced_state_lock);
z_cpus_pm_forced_state[cpu] = *info;
k_spin_unlock(&pm_forced_state_lock, key);
return true;
}
bool pm_system_suspend(int32_t ticks)
{
uint8_t id = CURRENT_CPU;
k_spinlock_key_t key;
SYS_PORT_TRACING_FUNC_ENTER(pm, system_suspend, ticks);
key = k_spin_lock(&pm_forced_state_lock);
if (z_cpus_pm_forced_state[id].state != PM_STATE_ACTIVE) {
z_cpus_pm_state[id] = z_cpus_pm_forced_state[id];
z_cpus_pm_forced_state[id].state = PM_STATE_ACTIVE;
} else {
const struct pm_state_info *info;
info = pm_policy_next_state(id, ticks);
if (info != NULL) {
z_cpus_pm_state[id] = *info;
}
}
k_spin_unlock(&pm_forced_state_lock, key);
if (z_cpus_pm_state[id].state == PM_STATE_ACTIVE) {
LOG_DBG("No PM operations done.");
SYS_PORT_TRACING_FUNC_EXIT(pm, system_suspend, ticks,
z_cpus_pm_state[id].state);
return false;
}
if (ticks != K_TICKS_FOREVER) {
/*
* We need to set the timer to interrupt a little bit early to
* accommodate the time required by the CPU to fully wake up.
*/
z_set_timeout_expiry(ticks -
k_us_to_ticks_ceil32(
z_cpus_pm_state[id].exit_latency_us),
true);
}
#if defined(CONFIG_PM_DEVICE) && !defined(CONFIG_PM_DEVICE_RUNTIME_EXCLUSIVE)
if ((z_cpus_pm_state[id].state != PM_STATE_RUNTIME_IDLE) &&
(atomic_sub(&z_cpus_active, 1) == 1)) {
if (pm_suspend_devices()) {
pm_resume_devices();
z_cpus_pm_state[id].state = PM_STATE_ACTIVE;
(void)atomic_add(&z_cpus_active, 1);
SYS_PORT_TRACING_FUNC_EXIT(pm, system_suspend, ticks,
z_cpus_pm_state[id].state);
return false;
}
}
#endif
/*
* This function runs with interruptions locked but it is
* expected the SoC to unlock them in
* pm_state_exit_post_ops() when returning to active
* state. We don't want to be scheduled out yet, first we need
* to send a notification about leaving the idle state. So,
* we lock the scheduler here and unlock just after we have
* sent the notification in pm_system_resume().
*/
k_sched_lock();
pm_stats_start();
/* Enter power state */
pm_state_notify(true);
atomic_set_bit(z_post_ops_required, id);
state_set(&z_cpus_pm_state[id]);
pm_stats_stop();
/* Wake up sequence starts here */
#if defined(CONFIG_PM_DEVICE) && !defined(CONFIG_PM_DEVICE_RUNTIME_EXCLUSIVE)
if (atomic_add(&z_cpus_active, 1) == 0) {
pm_resume_devices();
}
#endif
pm_stats_update(z_cpus_pm_state[id].state);
pm_system_resume();
k_sched_unlock();
SYS_PORT_TRACING_FUNC_EXIT(pm, system_suspend, ticks,
z_cpus_pm_state[id].state);
return true;
}
void pm_notifier_register(struct pm_notifier *notifier)
{
k_spinlock_key_t pm_notifier_key = k_spin_lock(&pm_notifier_lock);
sys_slist_append(&pm_notifiers, &notifier->_node);
k_spin_unlock(&pm_notifier_lock, pm_notifier_key);
}
int pm_notifier_unregister(struct pm_notifier *notifier)
{
int ret = -EINVAL;
k_spinlock_key_t pm_notifier_key;
pm_notifier_key = k_spin_lock(&pm_notifier_lock);
if (sys_slist_find_and_remove(&pm_notifiers, &(notifier->_node))) {
ret = 0;
}
k_spin_unlock(&pm_notifier_lock, pm_notifier_key);
return ret;
}
const struct pm_state_info *pm_state_next_get(uint8_t cpu)
{
return &z_cpus_pm_state[cpu];
}