zephyr/drivers/counter/counter_sam_tc.c

419 lines
11 KiB
C

/*
* Copyright (c) 2021, Piotr Mienkowski
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT atmel_sam_tc
/** @file
* @brief Atmel SAM MCU family counter (TC) driver.
*
* This version of the driver uses a single channel to provide a basic 16-bit
* counter (on SAM4E series the counter is 32-bit). Remaining TC channels could
* be used in the future to provide additional functionality, e.g. input clock
* divider configured via DT properties.
*
* Remarks:
* - The driver is not thread safe.
* - The driver does not implement guard periods.
* - The driver does not guarantee that short relative alarm will trigger the
* interrupt immediately and not after the full cycle / counter overflow.
*
* Use at your own risk or submit a patch.
*/
#include <errno.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/sys/util.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <soc.h>
#include <zephyr/drivers/counter.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(counter_sam_tc, CONFIG_COUNTER_LOG_LEVEL);
#define MAX_ALARMS_PER_TC_CHANNEL 2
#if defined(CONFIG_SOC_SERIES_SAM4E) || defined(CONFIG_SOC_SERIES_SAM3X)
#define COUNTER_SAM_TOP_VALUE_MAX UINT32_MAX
#else
#define COUNTER_SAM_TOP_VALUE_MAX UINT16_MAX
#define COUNTER_SAM_16_BIT
#endif
/* Device constant configuration parameters */
struct counter_sam_dev_cfg {
struct counter_config_info info;
Tc *regs;
uint32_t reg_cmr;
uint32_t reg_rc;
void (*irq_config_func)(const struct device *dev);
const struct pinctrl_dev_config *pcfg;
uint8_t clk_sel;
bool nodivclk;
uint8_t tc_chan_num;
uint8_t periph_id[TCCHANNEL_NUMBER];
};
struct counter_sam_alarm_data {
counter_alarm_callback_t callback;
void *user_data;
};
/* Device run time data */
struct counter_sam_dev_data {
counter_top_callback_t top_cb;
void *top_user_data;
struct counter_sam_alarm_data alarm[MAX_ALARMS_PER_TC_CHANNEL];
};
static const uint32_t sam_tc_input_freq_table[] = {
#if defined(CONFIG_SOC_SERIES_SAME70) || defined(CONFIG_SOC_SERIES_SAMV71)
USEC_PER_SEC,
SOC_ATMEL_SAM_MCK_FREQ_HZ / 8,
SOC_ATMEL_SAM_MCK_FREQ_HZ / 32,
SOC_ATMEL_SAM_MCK_FREQ_HZ / 128,
32768,
#elif defined(CONFIG_SOC_SERIES_SAM4L)
USEC_PER_SEC,
SOC_ATMEL_SAM_MCK_FREQ_HZ / 2,
SOC_ATMEL_SAM_MCK_FREQ_HZ / 8,
SOC_ATMEL_SAM_MCK_FREQ_HZ / 32,
SOC_ATMEL_SAM_MCK_FREQ_HZ / 128,
#else
SOC_ATMEL_SAM_MCK_FREQ_HZ / 2,
SOC_ATMEL_SAM_MCK_FREQ_HZ / 8,
SOC_ATMEL_SAM_MCK_FREQ_HZ / 32,
SOC_ATMEL_SAM_MCK_FREQ_HZ / 128,
32768,
#endif
USEC_PER_SEC, USEC_PER_SEC, USEC_PER_SEC,
};
static int counter_sam_tc_start(const struct device *dev)
{
const struct counter_sam_dev_cfg *const dev_cfg = dev->config;
Tc *tc = dev_cfg->regs;
TcChannel *tc_ch = &tc->TcChannel[dev_cfg->tc_chan_num];
tc_ch->TC_CCR = TC_CCR_CLKEN | TC_CCR_SWTRG;
return 0;
}
static int counter_sam_tc_stop(const struct device *dev)
{
const struct counter_sam_dev_cfg *const dev_cfg = dev->config;
Tc *tc = dev_cfg->regs;
TcChannel *tc_ch = &tc->TcChannel[dev_cfg->tc_chan_num];
tc_ch->TC_CCR = TC_CCR_CLKDIS;
return 0;
}
static int counter_sam_tc_get_value(const struct device *dev, uint32_t *ticks)
{
const struct counter_sam_dev_cfg *const dev_cfg = dev->config;
Tc *tc = dev_cfg->regs;
TcChannel *tc_ch = &tc->TcChannel[dev_cfg->tc_chan_num];
*ticks = tc_ch->TC_CV;
return 0;
}
static int counter_sam_tc_set_alarm(const struct device *dev, uint8_t chan_id,
const struct counter_alarm_cfg *alarm_cfg)
{
struct counter_sam_dev_data *data = dev->data;
const struct counter_sam_dev_cfg *const dev_cfg = dev->config;
Tc *tc = dev_cfg->regs;
TcChannel *tc_ch = &tc->TcChannel[dev_cfg->tc_chan_num];
uint32_t top_value;
uint32_t alarm_value;
__ASSERT_NO_MSG(alarm_cfg->callback != NULL);
top_value = tc_ch->TC_RC;
if ((top_value != 0) && (alarm_cfg->ticks > top_value)) {
return -EINVAL;
}
#ifdef COUNTER_SAM_16_BIT
if ((top_value == 0) && (alarm_cfg->ticks > UINT16_MAX)) {
return -EINVAL;
}
#endif
if (data->alarm[chan_id].callback != NULL) {
return -EBUSY;
}
if (chan_id == 0) {
tc_ch->TC_IDR = TC_IDR_CPAS;
} else {
tc_ch->TC_IDR = TC_IDR_CPBS;
}
data->alarm[chan_id].callback = alarm_cfg->callback;
data->alarm[chan_id].user_data = alarm_cfg->user_data;
if ((alarm_cfg->flags & COUNTER_ALARM_CFG_ABSOLUTE) != 0) {
alarm_value = alarm_cfg->ticks;
} else {
alarm_value = tc_ch->TC_CV + alarm_cfg->ticks;
if (top_value != 0) {
alarm_value %= top_value;
}
}
if (chan_id == 0) {
tc_ch->TC_RA = alarm_value;
/* Clear interrupt status register */
(void)tc_ch->TC_SR;
tc_ch->TC_IER = TC_IER_CPAS;
} else {
tc_ch->TC_RB = alarm_value;
/* Clear interrupt status register */
(void)tc_ch->TC_SR;
tc_ch->TC_IER = TC_IER_CPBS;
}
LOG_DBG("set alarm: channel %u, count %u", chan_id, alarm_value);
return 0;
}
static int counter_sam_tc_cancel_alarm(const struct device *dev, uint8_t chan_id)
{
struct counter_sam_dev_data *data = dev->data;
const struct counter_sam_dev_cfg *const dev_cfg = dev->config;
Tc *tc = dev_cfg->regs;
TcChannel *tc_ch = &tc->TcChannel[dev_cfg->tc_chan_num];
if (chan_id == 0) {
tc_ch->TC_IDR = TC_IDR_CPAS;
tc_ch->TC_RA = 0;
} else {
tc_ch->TC_IDR = TC_IDR_CPBS;
tc_ch->TC_RB = 0;
}
data->alarm[chan_id].callback = NULL;
data->alarm[chan_id].user_data = NULL;
LOG_DBG("cancel alarm: channel %u", chan_id);
return 0;
}
static int counter_sam_tc_set_top_value(const struct device *dev,
const struct counter_top_cfg *top_cfg)
{
struct counter_sam_dev_data *data = dev->data;
const struct counter_sam_dev_cfg *const dev_cfg = dev->config;
Tc *tc = dev_cfg->regs;
TcChannel *tc_ch = &tc->TcChannel[dev_cfg->tc_chan_num];
int ret = 0;
for (int i = 0; i < MAX_ALARMS_PER_TC_CHANNEL; i++) {
if (data->alarm[i].callback) {
return -EBUSY;
}
}
/* Disable the compare interrupt */
tc_ch->TC_IDR = TC_IDR_CPCS;
data->top_cb = top_cfg->callback;
data->top_user_data = top_cfg->user_data;
tc_ch->TC_RC = top_cfg->ticks;
if ((top_cfg->flags & COUNTER_TOP_CFG_DONT_RESET) != 0) {
if (tc_ch->TC_CV >= top_cfg->ticks) {
ret = -ETIME;
if ((top_cfg->flags & COUNTER_TOP_CFG_RESET_WHEN_LATE) != 0) {
tc_ch->TC_CCR = TC_CCR_SWTRG;
}
}
} else {
tc_ch->TC_CCR = TC_CCR_SWTRG;
}
/* Enable the compare interrupt */
tc_ch->TC_IER = TC_IER_CPCS;
return ret;
}
static uint32_t counter_sam_tc_get_top_value(const struct device *dev)
{
const struct counter_sam_dev_cfg *const dev_cfg = dev->config;
Tc *tc = dev_cfg->regs;
TcChannel *tc_ch = &tc->TcChannel[dev_cfg->tc_chan_num];
return tc_ch->TC_RC;
}
static uint32_t counter_sam_tc_get_pending_int(const struct device *dev)
{
const struct counter_sam_dev_cfg *const dev_cfg = dev->config;
Tc *tc = dev_cfg->regs;
TcChannel *tc_ch = &tc->TcChannel[dev_cfg->tc_chan_num];
return tc_ch->TC_SR & tc_ch->TC_IMR;
}
static void counter_sam_tc_isr(const struct device *dev)
{
struct counter_sam_dev_data *data = dev->data;
const struct counter_sam_dev_cfg *const dev_cfg = dev->config;
Tc *tc = dev_cfg->regs;
TcChannel *tc_ch = &tc->TcChannel[dev_cfg->tc_chan_num];
uint32_t status;
status = tc_ch->TC_SR;
if ((status & TC_SR_CPAS) != 0) {
tc_ch->TC_IDR = TC_IDR_CPAS;
if (data->alarm[0].callback) {
counter_alarm_callback_t cb = data->alarm[0].callback;
data->alarm[0].callback = NULL;
cb(dev, 0, tc_ch->TC_RA, data->alarm[0].user_data);
}
}
if ((status & TC_SR_CPBS) != 0) {
tc_ch->TC_IDR = TC_IDR_CPBS;
if (data->alarm[1].callback) {
counter_alarm_callback_t cb = data->alarm[1].callback;
data->alarm[1].callback = NULL;
cb(dev, 1, tc_ch->TC_RB, data->alarm[1].user_data);
}
}
if ((status & TC_SR_CPCS) != 0) {
if (data->top_cb) {
data->top_cb(dev, data->top_user_data);
}
}
}
static int counter_sam_initialize(const struct device *dev)
{
const struct counter_sam_dev_cfg *const dev_cfg = dev->config;
Tc *const tc = dev_cfg->regs;
TcChannel *tc_ch = &tc->TcChannel[dev_cfg->tc_chan_num];
int retval;
/* Connect pins to the peripheral */
retval = pinctrl_apply_state(dev_cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (retval < 0) {
return retval;
}
/* Enable channel's clock */
soc_pmc_peripheral_enable(dev_cfg->periph_id[dev_cfg->tc_chan_num]);
/* Clock and Mode Selection */
tc_ch->TC_CMR = dev_cfg->reg_cmr;
tc_ch->TC_RC = dev_cfg->reg_rc;
#ifdef TC_EMR_NODIVCLK
if (dev_cfg->nodivclk) {
tc_ch->TC_EMR = TC_EMR_NODIVCLK;
}
#endif
dev_cfg->irq_config_func(dev);
LOG_INF("Device %s initialized", dev->name);
return 0;
}
static const struct counter_driver_api counter_sam_driver_api = {
.start = counter_sam_tc_start,
.stop = counter_sam_tc_stop,
.get_value = counter_sam_tc_get_value,
.set_alarm = counter_sam_tc_set_alarm,
.cancel_alarm = counter_sam_tc_cancel_alarm,
.set_top_value = counter_sam_tc_set_top_value,
.get_top_value = counter_sam_tc_get_top_value,
.get_pending_int = counter_sam_tc_get_pending_int,
};
#define COUNTER_SAM_TC_CMR(n) \
(TC_CMR_TCCLKS(DT_INST_PROP_OR(n, clk, 0)) \
| TC_CMR_WAVEFORM_WAVSEL_UP_RC \
| TC_CMR_WAVE)
#define COUNTER_SAM_TC_REG_CMR(n) \
DT_INST_PROP_OR(n, reg_cmr, COUNTER_SAM_TC_CMR(n))
#define COUNTER_SAM_TC_INPUT_FREQUENCY(n) \
COND_CODE_1(DT_INST_PROP(n, nodivclk), \
(SOC_ATMEL_SAM_MCK_FREQ_HZ), \
(sam_tc_input_freq_table[COUNTER_SAM_TC_REG_CMR(n) \
& TC_CMR_TCCLKS_Msk]))
#define COUNTER_SAM_TC_INIT(n) \
PINCTRL_DT_INST_DEFINE(n); \
\
static void counter_##n##_sam_config_func(const struct device *dev); \
\
static const struct counter_sam_dev_cfg counter_##n##_sam_config = { \
.info = { \
.max_top_value = COUNTER_SAM_TOP_VALUE_MAX, \
.freq = COUNTER_SAM_TC_INPUT_FREQUENCY(n), \
.flags = COUNTER_CONFIG_INFO_COUNT_UP, \
.channels = MAX_ALARMS_PER_TC_CHANNEL \
}, \
.regs = (Tc *)DT_INST_REG_ADDR(n), \
.reg_cmr = COUNTER_SAM_TC_REG_CMR(n), \
.reg_rc = DT_INST_PROP_OR(n, reg_rc, 0), \
.irq_config_func = &counter_##n##_sam_config_func, \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.nodivclk = DT_INST_PROP(n, nodivclk), \
.tc_chan_num = DT_INST_PROP_OR(n, channel, 0), \
.periph_id = DT_INST_PROP(n, peripheral_id), \
}; \
\
static struct counter_sam_dev_data counter_##n##_sam_data; \
\
DEVICE_DT_INST_DEFINE(n, counter_sam_initialize, NULL, \
&counter_##n##_sam_data, &counter_##n##_sam_config, \
PRE_KERNEL_1, CONFIG_COUNTER_INIT_PRIORITY, \
&counter_sam_driver_api); \
\
static void counter_##n##_sam_config_func(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQ_BY_IDX(n, 0, irq), \
DT_INST_IRQ_BY_IDX(n, 0, priority), \
counter_sam_tc_isr, \
DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQ_BY_IDX(n, 0, irq)); \
\
IRQ_CONNECT(DT_INST_IRQ_BY_IDX(n, 1, irq), \
DT_INST_IRQ_BY_IDX(n, 1, priority), \
counter_sam_tc_isr, \
DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQ_BY_IDX(n, 1, irq)); \
\
IRQ_CONNECT(DT_INST_IRQ_BY_IDX(n, 2, irq), \
DT_INST_IRQ_BY_IDX(n, 2, priority), \
counter_sam_tc_isr, \
DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQ_BY_IDX(n, 2, irq)); \
}
DT_INST_FOREACH_STATUS_OKAY(COUNTER_SAM_TC_INIT)