zephyr/arch/arm/core/fault_s.S

148 lines
3.9 KiB
ArmAsm

/*
* Copyright (c) 2013-2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Fault handlers for ARM Cortex-M
*
* Fault handlers for ARM Cortex-M processors.
*/
#include <toolchain.h>
#include <linker/sections.h>
#include <arch/cpu.h>
_ASM_FILE_PROLOGUE
GTEXT(_Fault)
GTEXT(__hard_fault)
#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE)
/* HardFault is used for all fault conditions on ARMv6-M. */
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
GTEXT(__mpu_fault)
GTEXT(__bus_fault)
GTEXT(__usage_fault)
#if defined(CONFIG_ARM_SECURE_FIRMWARE)
GTEXT(__secure_fault)
#endif /* CONFIG_ARM_SECURE_FIRMWARE*/
GTEXT(__debug_monitor)
#else
#error Unknown ARM architecture
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */
GTEXT(__reserved)
/**
*
* @brief Fault handler installed in the fault and reserved vectors
*
* Entry point for the hard fault, MPU fault, bus fault, usage fault, debug
* monitor and reserved exceptions.
*
* Save the values of the MSP and PSP in r0 and r1 respectively, so the first
* and second parameters to the _Fault() C function that will handle the rest.
* This has to be done because at this point we do not know if the fault
* happened while handling an exception or not, and thus the ESF could be on
* either stack. _Fault() will find out where the ESF resides.
*
* Provides these symbols:
*
* __hard_fault
* __mpu_fault
* __bus_fault
* __usage_fault
* __secure_fault
* __debug_monitor
* __reserved
*/
SECTION_SUBSEC_FUNC(TEXT,__fault,__hard_fault)
#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE)
/* HardFault is used for all fault conditions on ARMv6-M. */
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
SECTION_SUBSEC_FUNC(TEXT,__fault,__mpu_fault)
SECTION_SUBSEC_FUNC(TEXT,__fault,__bus_fault)
SECTION_SUBSEC_FUNC(TEXT,__fault,__usage_fault)
#if defined(CONFIG_ARM_SECURE_FIRMWARE)
SECTION_SUBSEC_FUNC(TEXT,__fault,__secure_fault)
#endif /* CONFIG_ARM_SECURE_FIRMWARE */
SECTION_SUBSEC_FUNC(TEXT,__fault,__debug_monitor)
#else
#error Unknown ARM architecture
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */
SECTION_SUBSEC_FUNC(TEXT,__fault,__reserved)
#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE)
/* force unlock interrupts */
cpsie i
/* Use EXC_RETURN state to find out if stack frame is on the
* MSP or PSP
*/
ldr r0, =0x4
mov r1, lr
tst r1, r0
beq _stack_frame_msp
mrs r0, PSP
bne _stack_frame_endif
_stack_frame_msp:
mrs r0, MSP
_stack_frame_endif:
#elif defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
/* force unlock interrupts */
eors.n r0, r0
msr BASEPRI, r0
#if !defined(CONFIG_ARM_SECURE_FIRMWARE)
/* this checks to see if we are in a nested exception */
ldr ip, =_SCS_ICSR
ldr ip, [ip]
ands.w ip, #_SCS_ICSR_RETTOBASE
ite eq /* is the RETTOBASE bit zero ? */
mrseq r0, MSP /* if so, we're not returning to thread mode,
* thus this is a nested exception: the stack
* frame is on the MSP */
mrsne r0, PSP /* if not, we are returning to thread mode, thus
* this is not a nested exception: the stack
* frame is on the PSP */
#else
/* RETTOBASE flag is not banked between security states.
* Therefore, we cannot rely on this flag, to obtain the SP
* in Secure state. Instead, we use the EXC_RETURN SPSEL flag.
*/
ldr r0, =0x4
mov r1, lr
tst r1, r0
beq _s_stack_frame_msp
mrs r0, PSP
bne _s_stack_frame_endif
_s_stack_frame_msp:
mrs r0, MSP
_s_stack_frame_endif:
#endif /* CONFIG_ARM_SECURE_FIRMWARE */
#else
#error Unknown ARM architecture
#endif /* CONFIG_ARMV6_M_ARMV8_M_BASELINE */
#if defined(CONFIG_ARM_SECURE_FIRMWARE)
/* In ARM Secure firmware, the stack pointer that is retrieved
* above points to the Secure stack. However, the exeption may
* have occurred in Non-Secure state.
* To determine this we need to inspect the EXC_RETURN value
* located in the LR. Therefore, we supply the LR value as an
* argument to the fault handler.
*/
mov r1, lr
#endif /* CONFIG_ARM_SECURE_FIRMWARE */
push {lr}
bl _Fault
pop {pc}
.end