zephyr/drivers/pwm/pwm_qmsi.c

508 lines
12 KiB
C

/*
* Copyright (c) 2016 Intel Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <errno.h>
#include <pwm.h>
#include <device.h>
#include <kernel.h>
#include <init.h>
#include <power.h>
#include "qm_pwm.h"
#include "clk.h"
#define HW_CLOCK_CYCLES_PER_USEC (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / \
USEC_PER_SEC)
/* pwm uses 32 bits counter to control low and high period */
#define MAX_LOW_PERIOD_IN_HW_CLOCK_CYCLES (((uint64_t)1) << 32)
#define MAX_HIGH_PERIOD_IN_HW_CLOCK_CYCLES (((uint64_t)1) << 32)
#define MAX_PERIOD_IN_HW_CLOCK_CYCLES (MAX_LOW_PERIOD_IN_HW_CLOCK_CYCLES + \
MAX_HIGH_PERIOD_IN_HW_CLOCK_CYCLES)
/* in micro seconds. */
#define MAX_PERIOD (MAX_PERIOD_IN_HW_CLOCK_CYCLES / HW_CLOCK_CYCLES_PER_USEC)
/**
* in micro seconds. To be able to get 1% granularity, MIN_PERIOD should
* have at least 100 HW clock cycles.
*/
#define MIN_PERIOD ((100 + (HW_CLOCK_CYCLES_PER_USEC - 1)) / \
HW_CLOCK_CYCLES_PER_USEC)
/* in micro seconds */
#define DEFAULT_PERIOD 2000
struct pwm_data {
#ifdef CONFIG_PWM_QMSI_API_REENTRANCY
struct k_sem sem;
#endif
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
uint32_t device_power_state;
#endif
uint32_t channel_period[CONFIG_PWM_QMSI_NUM_PORTS];
};
static struct pwm_data pwm_context;
#ifdef CONFIG_PWM_QMSI_API_REENTRANCY
static const int reentrancy_protection = 1;
#define RP_GET(dev) (&((struct pwm_data *)(dev->driver_data))->sem)
#else
static const int reentrancy_protection;
#define RP_GET(dev) (NULL)
#endif
static void pwm_reentrancy_init(struct device *dev)
{
if (!reentrancy_protection) {
return;
}
k_sem_init(RP_GET(dev), 0, UINT_MAX);
k_sem_give(RP_GET(dev));
}
static void pwm_critical_region_start(struct device *dev)
{
if (!reentrancy_protection) {
return;
}
k_sem_take(RP_GET(dev), K_FOREVER);
}
static void pwm_critical_region_end(struct device *dev)
{
if (!reentrancy_protection) {
return;
}
k_sem_give(RP_GET(dev));
}
static int pwm_qmsi_configure(struct device *dev, int access_op,
uint32_t pwm, int flags)
{
ARG_UNUSED(dev);
ARG_UNUSED(access_op);
ARG_UNUSED(pwm);
ARG_UNUSED(flags);
return 0;
}
static int __set_one_port(struct device *dev, qm_pwm_t id, uint32_t pwm,
uint32_t on, uint32_t off)
{
qm_pwm_config_t cfg;
int ret_val = 0;
pwm_critical_region_start(dev);
/* Disable timer to prevent any output */
qm_pwm_stop(id, pwm);
if (on == 0) {
/* stop PWM if so specified */
goto pwm_set_port_return;
}
/**
* off period must be more than zero. Otherwise, the PWM pin will be
* turned off. Let's use the minimum value which is 1 for this case.
*/
if (off == 0) {
off = 1;
}
/* PWM mode, user-defined count mode, timer disabled */
cfg.mode = QM_PWM_MODE_PWM;
/* No interrupts */
cfg.mask_interrupt = true;
cfg.callback = NULL;
cfg.callback_data = NULL;
/* Data for the timer to stay high and low */
cfg.hi_count = on;
cfg.lo_count = off;
if (qm_pwm_set_config(id, pwm, &cfg) != 0) {
ret_val = -EIO;
goto pwm_set_port_return;
}
/* Enable timer so it starts running and counting */
qm_pwm_start(id, pwm);
pwm_set_port_return:
pwm_critical_region_end(dev);
return ret_val;
}
/*
* Set the time to assert and de-assert the PWM pin.
*
* This sets the duration for the pin to stay low or high.
*
* For example, with a nominal system clock of 32MHz, each count of on/off
* represents 31.25ns (e.g. off == 2 means the pin is to be de-asserted at
* 62.5ns from the beginning of a PWM cycle). The duration of 1 count depends
* on system clock. Refer to the hardware manual for more information.
*
* Parameters
* dev: Pointer to PWM device structure
* access_op: whether to set one pin or all
* pwm: PWM port number to set
* on: How far (in timer count) from the beginning of a PWM cycle the PWM
* pin should be asserted. Must be zero, since PWM from Quark MCU always
* starts from high.
* off: How far (in timer count) from the beginning of a PWM cycle the PWM
* pin should be de-asserted.
*
* return 0, or negative errno code
*/
static int pwm_qmsi_set_values(struct device *dev, int access_op,
uint32_t pwm, uint32_t on, uint32_t off)
{
struct pwm_data *context = dev->driver_data;
uint32_t *channel_period = context->channel_period;
int i, high, low;
if (on) {
return -EINVAL;
}
switch (access_op) {
case PWM_ACCESS_BY_PIN:
/* make sure the PWM port exists */
if (pwm >= CONFIG_PWM_QMSI_NUM_PORTS) {
return -EIO;
}
high = off;
low = channel_period[pwm] - off;
if (off >= channel_period[pwm]) {
high = channel_period[pwm] - 1;
low = 1;
}
if (off == 0) {
high = 1;
low = channel_period[pwm] - 1;
}
return __set_one_port(dev, QM_PWM_0, pwm, high, low);
case PWM_ACCESS_ALL:
for (i = 0; i < CONFIG_PWM_QMSI_NUM_PORTS; i++) {
high = off;
low = channel_period[i] - off;
if (off >= channel_period[i]) {
high = channel_period[i] - 1;
low = 1;
}
if (off == 0) {
high = 1;
low = channel_period[i] - 1;
}
if (__set_one_port(dev, QM_PWM_0, i, high, low) != 0) {
return -EIO;
}
}
break;
default:
return -ENOTSUP;
}
return 0;
}
static int pwm_qmsi_set_period(struct device *dev, int access_op,
uint32_t pwm, uint32_t period)
{
struct pwm_data *context = dev->driver_data;
uint32_t *channel_period = context->channel_period;
int ret_val = 0;
if (channel_period == NULL) {
return -EIO;
}
if (period < MIN_PERIOD || period > MAX_PERIOD) {
return -ENOTSUP;
}
pwm_critical_region_start(dev);
switch (access_op) {
case PWM_ACCESS_BY_PIN:
/* make sure the PWM port exists */
if (pwm >= CONFIG_PWM_QMSI_NUM_PORTS) {
ret_val = -EIO;
goto pwm_set_period_return;
}
channel_period[pwm] = period * HW_CLOCK_CYCLES_PER_USEC;
break;
case PWM_ACCESS_ALL:
for (int i = 0; i < CONFIG_PWM_QMSI_NUM_PORTS; i++) {
channel_period[i] = period *
HW_CLOCK_CYCLES_PER_USEC;
}
break;
default:
ret_val = -ENOTSUP;
}
pwm_set_period_return:
pwm_critical_region_end(dev);
return ret_val;
}
static int pwm_qmsi_set_duty_cycle(struct device *dev, int access_op,
uint32_t pwm, uint8_t duty)
{
struct pwm_data *context = dev->driver_data;
uint32_t *channel_period = context->channel_period;
uint32_t on, off;
if (channel_period == NULL) {
return -EIO;
}
if (duty > 100) {
return -ENOTSUP;
}
switch (access_op) {
case PWM_ACCESS_BY_PIN:
/* make sure the PWM port exists */
if (pwm >= CONFIG_PWM_QMSI_NUM_PORTS) {
return -EIO;
}
on = (channel_period[pwm] * duty) / 100;
off = channel_period[pwm] - on;
if (off == 0) {
on--;
off = 1;
}
return __set_one_port(dev, QM_PWM_0, pwm, on, off);
case PWM_ACCESS_ALL:
for (int i = 0; i < CONFIG_PWM_QMSI_NUM_PORTS; i++) {
on = (channel_period[i] * duty) / 100;
off = channel_period[i] - on;
if (off == 0) {
on--;
off = 1;
}
if (__set_one_port(dev, QM_PWM_0, i, on, off) != 0) {
return -EIO;
}
}
break;
default:
return -ENOTSUP;
}
return 0;
}
static int pwm_qmsi_set_phase(struct device *dev, int access_op,
uint32_t pwm, uint8_t phase)
{
ARG_UNUSED(dev);
ARG_UNUSED(access_op);
ARG_UNUSED(pwm);
ARG_UNUSED(phase);
return -ENOTSUP;
}
/*
* Set the period and pulse width for a PWM pin.
*
* For example, with a nominal system clock of 32MHz, each count represents
* 31.25ns (e.g. period = 100 means the pulse is to repeat every 3125ns). The
* duration of one count depends on system clock. Refer to the hardware manual
* for more information.
*
* Parameters
* dev: Pointer to PWM device structure
* pwm: PWM port number to set
* period_cycles: Period (in timer count)
* pulse_cycles: Pulse width (in timer count).
*
* return 0, or negative errno code
*/
static int pwm_qmsi_pin_set(struct device *dev, uint32_t pwm,
uint32_t period_cycles, uint32_t pulse_cycles)
{
uint32_t high, low;
if (pwm >= CONFIG_PWM_QMSI_NUM_PORTS) {
return -EINVAL;
}
if (period_cycles == 0 || pulse_cycles > period_cycles) {
return -EINVAL;
}
high = pulse_cycles;
low = period_cycles - pulse_cycles;
/*
* low must be more than zero. Otherwise, the PWM pin will be
* turned off. Let's make sure low is always more than zero.
*/
if (low == 0) {
high--;
low = 1;
}
return __set_one_port(dev, QM_PWM_0, pwm, high, low);
}
/*
* Get the clock rate (cycles per second) for a PWM pin.
*
* Parameters
* dev: Pointer to PWM device structure
* pwm: PWM port number
* cycles: Pointer to the memory to store clock rate (cycles per second)
*
* return 0, or negative errno code
*/
static int pwm_qmsi_get_cycles_per_sec(struct device *dev, uint32_t pwm,
uint64_t *cycles)
{
if (cycles == NULL) {
return -EINVAL;
}
*cycles = (uint64_t)clk_sys_get_ticks_per_us() * USEC_PER_SEC;
return 0;
}
static const struct pwm_driver_api pwm_qmsi_drv_api_funcs = {
.config = pwm_qmsi_configure,
.set_values = pwm_qmsi_set_values,
.set_period = pwm_qmsi_set_period,
.set_duty_cycle = pwm_qmsi_set_duty_cycle,
.set_phase = pwm_qmsi_set_phase,
.pin_set = pwm_qmsi_pin_set,
.get_cycles_per_sec = pwm_qmsi_get_cycles_per_sec,
};
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
static void pwm_qmsi_set_power_state(struct device *dev, uint32_t power_state)
{
struct pwm_data *context = dev->driver_data;
context->device_power_state = power_state;
}
#else
#define pwm_qmsi_set_power_state(...)
#endif
static int pwm_qmsi_init(struct device *dev)
{
struct pwm_data *context = dev->driver_data;
uint32_t *channel_period = context->channel_period;
for (int i = 0; i < CONFIG_PWM_QMSI_NUM_PORTS; i++) {
channel_period[i] = DEFAULT_PERIOD *
HW_CLOCK_CYCLES_PER_USEC;
}
clk_periph_enable(CLK_PERIPH_PWM_REGISTER | CLK_PERIPH_CLK);
pwm_reentrancy_init(dev);
pwm_qmsi_set_power_state(dev, DEVICE_PM_ACTIVE_STATE);
return 0;
}
#ifdef CONFIG_DEVICE_POWER_MANAGEMENT
static uint32_t pwm_qmsi_get_power_state(struct device *dev)
{
struct pwm_data *context = dev->driver_data;
return context->device_power_state;
}
#ifdef CONFIG_SYS_POWER_DEEP_SLEEP
static qm_pwm_context_t pwm_ctx;
static int pwm_qmsi_suspend(struct device *dev)
{
qm_pwm_save_context(QM_PWM_0, &pwm_ctx);
pwm_qmsi_set_power_state(dev, DEVICE_PM_SUSPEND_STATE);
return 0;
}
static int pwm_qmsi_resume_from_suspend(struct device *dev)
{
qm_pwm_restore_context(QM_PWM_0, &pwm_ctx);
pwm_qmsi_set_power_state(dev, DEVICE_PM_ACTIVE_STATE);
return 0;
}
#endif
/*
* Implements the driver control management functionality
* the *context may include IN data or/and OUT data
*/
static int pwm_qmsi_device_ctrl(struct device *dev, uint32_t ctrl_command,
void *context)
{
if (ctrl_command == DEVICE_PM_SET_POWER_STATE) {
#ifdef CONFIG_SYS_POWER_DEEP_SLEEP
if (*((uint32_t *)context) == DEVICE_PM_SUSPEND_STATE) {
return pwm_qmsi_suspend(dev);
} else if (*((uint32_t *)context) == DEVICE_PM_ACTIVE_STATE) {
return pwm_qmsi_resume_from_suspend(dev);
}
#endif
} else if (ctrl_command == DEVICE_PM_GET_POWER_STATE) {
*((uint32_t *)context) = pwm_qmsi_get_power_state(dev);
return 0;
}
return 0;
}
#endif
DEVICE_DEFINE(pwm_qmsi_0, CONFIG_PWM_QMSI_DEV_NAME, pwm_qmsi_init,
pwm_qmsi_device_ctrl, &pwm_context, NULL,
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&pwm_qmsi_drv_api_funcs);