zephyr/subsys/logging/log_core.c

700 lines
14 KiB
C

/*
* Copyright (c) 2018 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <logging/log_msg.h>
#include "log_list.h"
#include <logging/log.h>
#include <logging/log_backend.h>
#include <logging/log_ctrl.h>
#include <logging/log_output.h>
#include <misc/printk.h>
#include <init.h>
#include <assert.h>
#include <atomic.h>
#ifndef CONFIG_LOG_PRINTK_MAX_STRING_LENGTH
#define CONFIG_LOG_PRINTK_MAX_STRING_LENGTH 1
#endif
#ifndef CONFIG_LOG_PROCESS_THREAD_SLEEP_MS
#define CONFIG_LOG_PROCESS_THREAD_SLEEP_MS 0
#endif
#ifndef CONFIG_LOG_PROCESS_TRIGGER_THRESHOLD
#define CONFIG_LOG_PROCESS_TRIGGER_THRESHOLD 0
#endif
#ifndef CONFIG_LOG_PROCESS_THREAD_STACK_SIZE
#define CONFIG_LOG_PROCESS_THREAD_STACK_SIZE 1
#endif
#ifndef CONFIG_LOG_STRDUP_MAX_STRING
#define CONFIG_LOG_STRDUP_MAX_STRING 0
#endif
#ifndef CONFIG_LOG_STRDUP_BUF_COUNT
#define CONFIG_LOG_STRDUP_BUF_COUNT 0
#endif
struct log_strdup_buf {
atomic_t refcount;
char buf[CONFIG_LOG_STRDUP_MAX_STRING + 1]; /* for termination */
};
#define LOG_STRDUP_POOL_BUFFER_SIZE \
(sizeof(struct log_strdup_buf) * CONFIG_LOG_STRDUP_BUF_COUNT)
static const char *log_strdup_fail_msg = "<log_strdup alloc failed>";
struct k_mem_slab log_strdup_pool;
static u8_t __noinit __aligned(sizeof(u32_t))
log_strdup_pool_buf[LOG_STRDUP_POOL_BUFFER_SIZE];
static struct log_list_t list;
static atomic_t initialized;
static bool panic_mode;
static bool backend_attached;
static atomic_t buffered_cnt;
static atomic_t dropped_cnt;
static k_tid_t proc_tid;
static u32_t dummy_timestamp(void);
static timestamp_get_t timestamp_func = dummy_timestamp;
static u32_t dummy_timestamp(void)
{
return 0;
}
static inline void msg_finalize(struct log_msg *msg,
struct log_msg_ids src_level)
{
unsigned int key;
msg->hdr.ids = src_level;
msg->hdr.timestamp = timestamp_func();
atomic_inc(&buffered_cnt);
key = irq_lock();
log_list_add_tail(&list, msg);
irq_unlock(key);
if (panic_mode) {
(void)log_process(false);
} else if (CONFIG_LOG_PROCESS_TRIGGER_THRESHOLD) {
if ((buffered_cnt == CONFIG_LOG_PROCESS_TRIGGER_THRESHOLD) &&
(proc_tid != NULL)) {
k_wakeup(proc_tid);
}
}
}
void log_0(const char *str, struct log_msg_ids src_level)
{
struct log_msg *msg = log_msg_create_0(str);
if (msg == NULL) {
return;
}
msg_finalize(msg, src_level);
}
void log_1(const char *str,
u32_t arg0,
struct log_msg_ids src_level)
{
struct log_msg *msg = log_msg_create_1(str, arg0);
if (msg == NULL) {
return;
}
msg_finalize(msg, src_level);
}
void log_2(const char *str,
u32_t arg0,
u32_t arg1,
struct log_msg_ids src_level)
{
struct log_msg *msg = log_msg_create_2(str, arg0, arg1);
if (msg == NULL) {
return;
}
msg_finalize(msg, src_level);
}
void log_3(const char *str,
u32_t arg0,
u32_t arg1,
u32_t arg2,
struct log_msg_ids src_level)
{
struct log_msg *msg = log_msg_create_3(str, arg0, arg1, arg2);
if (msg == NULL) {
return;
}
msg_finalize(msg, src_level);
}
void log_n(const char *str,
u32_t *args,
u32_t narg,
struct log_msg_ids src_level)
{
struct log_msg *msg = log_msg_create_n(str, args, narg);
if (msg == NULL) {
return;
}
msg_finalize(msg, src_level);
}
void log_hexdump(const char *str,
const u8_t *data,
u32_t length,
struct log_msg_ids src_level)
{
struct log_msg *msg = log_msg_hexdump_create(str, data, length);
if (msg == NULL) {
return;
}
msg_finalize(msg, src_level);
}
int log_printk(const char *fmt, va_list ap)
{
int length = 0;
if (IS_ENABLED(CONFIG_LOG_PRINTK)) {
struct log_msg_ids src_level = {
.level = LOG_LEVEL_INTERNAL_RAW_STRING
};
if (IS_ENABLED(CONFIG_LOG_IMMEDIATE)) {
log_generic(src_level, fmt, ap);
} else {
u8_t formatted_str[CONFIG_LOG_PRINTK_MAX_STRING_LENGTH];
struct log_msg *msg;
length = vsnprintk(formatted_str,
sizeof(formatted_str), fmt, ap);
length = min(length, sizeof(formatted_str));
msg = log_msg_hexdump_create(NULL, formatted_str,
length);
if (msg == NULL) {
return 0;
}
msg_finalize(msg, src_level);
}
}
return length;
}
/** @brief Count number of arguments in formatted string.
*
* Function counts number of '%' not followed by '%'.
*/
static u32_t count_args(const char *fmt)
{
u32_t args = 0U;
bool prev = false; /* if previous char was a modificator. */
while (*fmt != '\0') {
if (*fmt == '%') {
prev = !prev;
} else if (prev) {
args++;
prev = false;
}
fmt++;
}
return args;
}
void log_generic(struct log_msg_ids src_level, const char *fmt, va_list ap)
{
if (IS_ENABLED(CONFIG_LOG_IMMEDIATE)) {
struct log_backend const *backend;
u32_t timestamp = timestamp_func();
for (int i = 0; i < log_backend_count_get(); i++) {
backend = log_backend_get(i);
if (log_backend_is_active(backend)) {
log_backend_put_sync_string(backend, src_level,
timestamp, fmt, ap);
}
}
} else {
u32_t args[LOG_MAX_NARGS];
u32_t nargs = count_args(fmt);
for (int i = 0; i < nargs; i++) {
args[i] = va_arg(ap, u32_t);
}
log_n(fmt, args, nargs, src_level);
}
}
void log_string_sync(struct log_msg_ids src_level, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
log_generic(src_level, fmt, ap);
va_end(ap);
}
void log_hexdump_sync(struct log_msg_ids src_level, const char *metadata,
const u8_t *data, u32_t len)
{
struct log_backend const *backend;
u32_t timestamp = timestamp_func();
for (int i = 0; i < log_backend_count_get(); i++) {
backend = log_backend_get(i);
if (log_backend_is_active(backend)) {
log_backend_put_sync_hexdump(backend, src_level,
timestamp, metadata,
data, len);
}
}
}
static u32_t timestamp_get(void)
{
return k_cycle_get_32();
}
void log_core_init(void)
{
if (!IS_ENABLED(CONFIG_LOG_IMMEDIATE)) {
log_msg_pool_init();
log_list_init(&list);
k_mem_slab_init(&log_strdup_pool, log_strdup_pool_buf,
sizeof(struct log_strdup_buf),
CONFIG_LOG_STRDUP_BUF_COUNT);
}
/* Set default timestamp. */
timestamp_func = timestamp_get;
log_output_timestamp_freq_set(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);
/*
* Initialize aggregated runtime filter levels (no backends are
* attached yet, so leave backend slots in each dynamic filter set
* alone for now).
*
* Each log source's aggregated runtime level is set to match its
* compile-time level. When backends are attached later on in
* log_init(), they'll be initialized to the same value.
*/
if (IS_ENABLED(CONFIG_LOG_RUNTIME_FILTERING)) {
for (int i = 0; i < log_sources_count(); i++) {
u32_t *filters = log_dynamic_filters_get(i);
u8_t level = log_compiled_level_get(i);
LOG_FILTER_SLOT_SET(filters,
LOG_FILTER_AGGR_SLOT_IDX,
level);
}
}
}
void log_init(void)
{
assert(log_backend_count_get() < LOG_FILTERS_NUM_OF_SLOTS);
int i;
if (atomic_inc(&initialized) != 0) {
return;
}
/* Assign ids to backends. */
for (i = 0; i < log_backend_count_get(); i++) {
const struct log_backend *backend = log_backend_get(i);
if (backend->autostart) {
if (backend->api->init != NULL) {
backend->api->init();
}
log_backend_enable(backend, NULL, CONFIG_LOG_MAX_LEVEL);
}
}
}
static void thread_set(k_tid_t process_tid)
{
proc_tid = process_tid;
if (!IS_ENABLED(CONFIG_LOG_IMMEDIATE) &&
CONFIG_LOG_PROCESS_TRIGGER_THRESHOLD &&
process_tid &&
buffered_cnt >= CONFIG_LOG_PROCESS_TRIGGER_THRESHOLD) {
k_wakeup(proc_tid);
}
}
void log_thread_set(k_tid_t process_tid)
{
if (IS_ENABLED(CONFIG_LOG_PROCESS_THREAD)) {
assert(0);
} else {
thread_set(process_tid);
}
}
int log_set_timestamp_func(timestamp_get_t timestamp_getter, u32_t freq)
{
if (!timestamp_getter) {
return -EINVAL;
}
timestamp_func = timestamp_getter;
log_output_timestamp_freq_set(freq);
return 0;
}
void log_panic(void)
{
struct log_backend const *backend;
if (panic_mode) {
return;
}
/* If panic happend early logger might not be initialized.
* Forcing initialization of the logger and auto-starting backends.
*/
log_init();
for (int i = 0; i < log_backend_count_get(); i++) {
backend = log_backend_get(i);
if (log_backend_is_active(backend)) {
log_backend_panic(backend);
}
}
panic_mode = true;
if (!IS_ENABLED(CONFIG_LOG_IMMEDIATE)) {
/* Flush */
while (log_process(false) == true) {
}
}
}
static bool msg_filter_check(struct log_backend const *backend,
struct log_msg *msg)
{
if (IS_ENABLED(CONFIG_LOG_RUNTIME_FILTERING)) {
u32_t backend_level;
u32_t msg_level;
backend_level = log_filter_get(backend,
log_msg_domain_id_get(msg),
log_msg_source_id_get(msg),
true /*enum RUNTIME, COMPILETIME*/);
msg_level = log_msg_level_get(msg);
return (msg_level <= backend_level);
} else {
return true;
}
}
static void msg_process(struct log_msg *msg, bool bypass)
{
struct log_backend const *backend;
if (!bypass) {
for (int i = 0; i < log_backend_count_get(); i++) {
backend = log_backend_get(i);
if (log_backend_is_active(backend) &&
msg_filter_check(backend, msg)) {
log_backend_put(backend, msg);
}
}
} else {
atomic_inc(&dropped_cnt);
}
log_msg_put(msg);
}
void dropped_notify(void)
{
u32_t dropped = atomic_set(&dropped_cnt, 0);
for (int i = 0; i < log_backend_count_get(); i++) {
struct log_backend const *backend = log_backend_get(i);
if (log_backend_is_active(backend)) {
log_backend_dropped(backend, dropped);
}
}
}
bool log_process(bool bypass)
{
struct log_msg *msg;
if (!backend_attached && !bypass) {
return false;
}
unsigned int key = irq_lock();
msg = log_list_head_get(&list);
irq_unlock(key);
if (msg != NULL) {
atomic_dec(&buffered_cnt);
msg_process(msg, bypass);
}
if (!bypass && dropped_cnt) {
dropped_notify();
}
return (log_list_head_peek(&list) != NULL);
}
u32_t log_buffered_cnt(void)
{
return buffered_cnt;
}
u32_t log_src_cnt_get(u32_t domain_id)
{
return log_sources_count();
}
const char *log_source_name_get(u32_t domain_id, u32_t src_id)
{
return src_id < log_sources_count() ? log_name_get(src_id) : NULL;
}
static u32_t max_filter_get(u32_t filters)
{
u32_t max_filter = LOG_LEVEL_NONE;
int first_slot = LOG_FILTER_FIRST_BACKEND_SLOT_IDX;
int i;
for (i = first_slot; i < LOG_FILTERS_NUM_OF_SLOTS; i++) {
u32_t tmp_filter = LOG_FILTER_SLOT_GET(&filters, i);
if (tmp_filter > max_filter) {
max_filter = tmp_filter;
}
}
return max_filter;
}
u32_t log_filter_set(struct log_backend const *const backend,
u32_t domain_id,
u32_t src_id,
u32_t level)
{
assert(src_id < log_sources_count());
if (IS_ENABLED(CONFIG_LOG_RUNTIME_FILTERING)) {
u32_t new_aggr_filter;
u32_t *filters = log_dynamic_filters_get(src_id);
if (backend == NULL) {
struct log_backend const *backend;
u32_t max = 0U;
u32_t current;
for (int i = 0; i < log_backend_count_get(); i++) {
backend = log_backend_get(i);
current = log_filter_set(backend, domain_id,
src_id, level);
max = max(current, max);
}
level = max;
} else {
u32_t max = log_filter_get(backend, domain_id,
src_id, false);
level = min(level, max);
LOG_FILTER_SLOT_SET(filters,
log_backend_id_get(backend),
level);
/* Once current backend filter is updated recalculate
* aggregated maximal level
*/
new_aggr_filter = max_filter_get(*filters);
LOG_FILTER_SLOT_SET(filters,
LOG_FILTER_AGGR_SLOT_IDX,
new_aggr_filter);
}
}
return level;
}
static void backend_filter_set(struct log_backend const *const backend,
u32_t level)
{
if (IS_ENABLED(CONFIG_LOG_RUNTIME_FILTERING)) {
for (int i = 0; i < log_sources_count(); i++) {
log_filter_set(backend,
CONFIG_LOG_DOMAIN_ID,
i,
level);
}
}
}
void log_backend_enable(struct log_backend const *const backend,
void *ctx,
u32_t level)
{
/* As first slot in filtering mask is reserved, backend ID has offset.*/
u32_t id = LOG_FILTER_FIRST_BACKEND_SLOT_IDX;
id += backend - log_backend_get(0);
log_backend_id_set(backend, id);
backend_filter_set(backend, level);
log_backend_activate(backend, ctx);
backend_attached = true;
}
void log_backend_disable(struct log_backend const *const backend)
{
log_backend_deactivate(backend);
backend_filter_set(backend, LOG_LEVEL_NONE);
}
u32_t log_filter_get(struct log_backend const *const backend,
u32_t domain_id,
u32_t src_id,
bool runtime)
{
assert(src_id < log_sources_count());
if (IS_ENABLED(CONFIG_LOG_RUNTIME_FILTERING) && runtime) {
u32_t *filters = log_dynamic_filters_get(src_id);
return LOG_FILTER_SLOT_GET(filters,
log_backend_id_get(backend));
} else {
return log_compiled_level_get(src_id);
}
}
char *log_strdup(const char *str)
{
struct log_strdup_buf *dup;
int err;
if (IS_ENABLED(CONFIG_LOG_IMMEDIATE)) {
return (char *)str;
}
err = k_mem_slab_alloc(&log_strdup_pool, (void **)&dup, K_NO_WAIT);
if (err != 0) {
/* failed to allocate */
return (char *)log_strdup_fail_msg;
}
/* Set 'allocated' flag. */
(void)atomic_set(&dup->refcount, 1);
strncpy(dup->buf, str, sizeof(dup->buf) - 2);
dup->buf[sizeof(dup->buf) - 2] = '~';
dup->buf[sizeof(dup->buf) - 1] = '\0';
return dup->buf;
}
bool log_is_strdup(void *buf)
{
struct log_strdup_buf *pool_first, *pool_last;
pool_first = (struct log_strdup_buf *)log_strdup_pool_buf;
pool_last = pool_first + CONFIG_LOG_STRDUP_BUF_COUNT - 1;
return ((char *)buf >= pool_first->buf) &&
((char *)buf <= pool_last->buf);
}
void log_free(void *str)
{
struct log_strdup_buf *dup = CONTAINER_OF(str, struct log_strdup_buf,
buf);
if (atomic_dec(&dup->refcount) == 1) {
k_mem_slab_free(&log_strdup_pool, (void **)&dup);
}
}
static void log_process_thread_func(void *dummy1, void *dummy2, void *dummy3)
{
log_init();
thread_set(k_current_get());
while (true) {
if (log_process(false) == false) {
k_sleep(CONFIG_LOG_PROCESS_THREAD_SLEEP_MS);
}
}
}
K_THREAD_STACK_DEFINE(logging_stack, CONFIG_LOG_PROCESS_THREAD_STACK_SIZE);
struct k_thread logging_thread;
static int enable_logger(struct device *arg)
{
ARG_UNUSED(arg);
if (IS_ENABLED(CONFIG_LOG_PROCESS_THREAD)) {
/* start logging thread */
k_thread_create(&logging_thread, logging_stack,
K_THREAD_STACK_SIZEOF(logging_stack),
log_process_thread_func, NULL, NULL, NULL,
K_LOWEST_APPLICATION_THREAD_PRIO, 0, K_NO_WAIT);
k_thread_name_set(&logging_thread, "logging");
} else {
log_init();
}
return 0;
}
SYS_INIT(enable_logger, POST_KERNEL, 0);