zephyr/kernel/timeout.c

382 lines
8.5 KiB
C

/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <zephyr/spinlock.h>
#include <ksched.h>
#include <zephyr/timeout_q.h>
#include <zephyr/syscall_handler.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/sys_clock.h>
static uint64_t curr_tick;
static sys_dlist_t timeout_list = SYS_DLIST_STATIC_INIT(&timeout_list);
static struct k_spinlock timeout_lock;
#define MAX_WAIT (IS_ENABLED(CONFIG_SYSTEM_CLOCK_SLOPPY_IDLE) \
? K_TICKS_FOREVER : INT_MAX)
/* Cycles left to process in the currently-executing sys_clock_announce() */
static int announce_remaining;
#if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME)
int z_clock_hw_cycles_per_sec = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_sys_clock_hw_cycles_per_sec_runtime_get(void)
{
return z_impl_sys_clock_hw_cycles_per_sec_runtime_get();
}
#include <syscalls/sys_clock_hw_cycles_per_sec_runtime_get_mrsh.c>
#endif /* CONFIG_USERSPACE */
#endif /* CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME */
static struct _timeout *first(void)
{
sys_dnode_t *t = sys_dlist_peek_head(&timeout_list);
return t == NULL ? NULL : CONTAINER_OF(t, struct _timeout, node);
}
static struct _timeout *next(struct _timeout *t)
{
sys_dnode_t *n = sys_dlist_peek_next(&timeout_list, &t->node);
return n == NULL ? NULL : CONTAINER_OF(n, struct _timeout, node);
}
static void remove_timeout(struct _timeout *t)
{
if (next(t) != NULL) {
next(t)->dticks += t->dticks;
}
sys_dlist_remove(&t->node);
}
static int32_t elapsed(void)
{
return announce_remaining == 0 ? sys_clock_elapsed() : 0U;
}
static int32_t next_timeout(void)
{
struct _timeout *to = first();
int32_t ticks_elapsed = elapsed();
int32_t ret;
if ((to == NULL) ||
((int64_t)(to->dticks - ticks_elapsed) > (int64_t)INT_MAX)) {
ret = MAX_WAIT;
} else {
ret = MAX(0, to->dticks - ticks_elapsed);
}
#ifdef CONFIG_TIMESLICING
if (_current_cpu->slice_ticks && _current_cpu->slice_ticks < ret) {
ret = _current_cpu->slice_ticks;
}
#endif
return ret;
}
void z_add_timeout(struct _timeout *to, _timeout_func_t fn,
k_timeout_t timeout)
{
if (K_TIMEOUT_EQ(timeout, K_FOREVER)) {
return;
}
#ifdef CONFIG_KERNEL_COHERENCE
__ASSERT_NO_MSG(arch_mem_coherent(to));
#endif
__ASSERT(!sys_dnode_is_linked(&to->node), "");
to->fn = fn;
LOCKED(&timeout_lock) {
struct _timeout *t;
if (IS_ENABLED(CONFIG_TIMEOUT_64BIT) &&
Z_TICK_ABS(timeout.ticks) >= 0) {
k_ticks_t ticks = Z_TICK_ABS(timeout.ticks) - curr_tick;
to->dticks = MAX(1, ticks);
} else {
to->dticks = timeout.ticks + 1 + elapsed();
}
for (t = first(); t != NULL; t = next(t)) {
if (t->dticks > to->dticks) {
t->dticks -= to->dticks;
sys_dlist_insert(&t->node, &to->node);
break;
}
to->dticks -= t->dticks;
}
if (t == NULL) {
sys_dlist_append(&timeout_list, &to->node);
}
if (to == first()) {
#if CONFIG_TIMESLICING
/*
* This is not ideal, since it does not
* account the time elapsed since the
* last announcement, and slice_ticks is based
* on that. It means that the time remaining for
* the next announcement can be less than
* slice_ticks.
*/
int32_t next_time = next_timeout();
if (next_time == 0 ||
_current_cpu->slice_ticks != next_time) {
sys_clock_set_timeout(next_time, false);
}
#else
sys_clock_set_timeout(next_timeout(), false);
#endif /* CONFIG_TIMESLICING */
}
}
}
int z_abort_timeout(struct _timeout *to)
{
int ret = -EINVAL;
LOCKED(&timeout_lock) {
if (sys_dnode_is_linked(&to->node)) {
remove_timeout(to);
ret = 0;
}
}
return ret;
}
/* must be locked */
static k_ticks_t timeout_rem(const struct _timeout *timeout)
{
k_ticks_t ticks = 0;
if (z_is_inactive_timeout(timeout)) {
return 0;
}
for (struct _timeout *t = first(); t != NULL; t = next(t)) {
ticks += t->dticks;
if (timeout == t) {
break;
}
}
return ticks - elapsed();
}
k_ticks_t z_timeout_remaining(const struct _timeout *timeout)
{
k_ticks_t ticks = 0;
LOCKED(&timeout_lock) {
ticks = timeout_rem(timeout);
}
return ticks;
}
k_ticks_t z_timeout_expires(const struct _timeout *timeout)
{
k_ticks_t ticks = 0;
LOCKED(&timeout_lock) {
ticks = curr_tick + timeout_rem(timeout);
}
return ticks;
}
int32_t z_get_next_timeout_expiry(void)
{
int32_t ret = (int32_t) K_TICKS_FOREVER;
LOCKED(&timeout_lock) {
ret = next_timeout();
}
return ret;
}
void z_set_timeout_expiry(int32_t ticks, bool is_idle)
{
LOCKED(&timeout_lock) {
int next_to = next_timeout();
bool sooner = (next_to == K_TICKS_FOREVER)
|| (ticks <= next_to);
bool imminent = next_to <= 1;
/* Only set new timeouts when they are sooner than
* what we have. Also don't try to set a timeout when
* one is about to expire: drivers have internal logic
* that will bump the timeout to the "next" tick if
* it's not considered to be settable as directed.
* SMP can't use this optimization though: we don't
* know when context switches happen until interrupt
* exit and so can't get the timeslicing clamp folded
* in.
*/
if (!imminent && (sooner || IS_ENABLED(CONFIG_SMP))) {
sys_clock_set_timeout(MIN(ticks, next_to), is_idle);
}
}
}
void sys_clock_announce(int32_t ticks)
{
#ifdef CONFIG_TIMESLICING
z_time_slice(ticks);
#endif
k_spinlock_key_t key = k_spin_lock(&timeout_lock);
/* We release the lock around the callbacks below, so on SMP
* systems someone might be already running the loop. Don't
* race (which will cause paralllel execution of "sequential"
* timeouts and confuse apps), just increment the tick count
* and return.
*/
if (IS_ENABLED(CONFIG_SMP) && (announce_remaining != 0)) {
announce_remaining += ticks;
k_spin_unlock(&timeout_lock, key);
return;
}
announce_remaining = ticks;
while (first() != NULL && first()->dticks <= announce_remaining) {
struct _timeout *t = first();
int dt = t->dticks;
curr_tick += dt;
t->dticks = 0;
remove_timeout(t);
k_spin_unlock(&timeout_lock, key);
t->fn(t);
key = k_spin_lock(&timeout_lock);
announce_remaining -= dt;
}
if (first() != NULL) {
first()->dticks -= announce_remaining;
}
curr_tick += announce_remaining;
announce_remaining = 0;
sys_clock_set_timeout(next_timeout(), false);
k_spin_unlock(&timeout_lock, key);
}
int64_t sys_clock_tick_get(void)
{
uint64_t t = 0U;
LOCKED(&timeout_lock) {
t = curr_tick + elapsed();
}
return t;
}
uint32_t sys_clock_tick_get_32(void)
{
#ifdef CONFIG_TICKLESS_KERNEL
return (uint32_t)sys_clock_tick_get();
#else
return (uint32_t)curr_tick;
#endif
}
int64_t z_impl_k_uptime_ticks(void)
{
return sys_clock_tick_get();
}
#ifdef CONFIG_USERSPACE
static inline int64_t z_vrfy_k_uptime_ticks(void)
{
return z_impl_k_uptime_ticks();
}
#include <syscalls/k_uptime_ticks_mrsh.c>
#endif
void z_impl_k_busy_wait(uint32_t usec_to_wait)
{
SYS_PORT_TRACING_FUNC_ENTER(k_thread, busy_wait, usec_to_wait);
if (usec_to_wait == 0U) {
SYS_PORT_TRACING_FUNC_EXIT(k_thread, busy_wait, usec_to_wait);
return;
}
#if !defined(CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT)
uint32_t start_cycles = k_cycle_get_32();
/* use 64-bit math to prevent overflow when multiplying */
uint32_t cycles_to_wait = (uint32_t)(
(uint64_t)usec_to_wait *
(uint64_t)sys_clock_hw_cycles_per_sec() /
(uint64_t)USEC_PER_SEC
);
for (;;) {
uint32_t current_cycles = k_cycle_get_32();
/* this handles the rollover on an unsigned 32-bit value */
if ((current_cycles - start_cycles) >= cycles_to_wait) {
break;
}
}
#else
arch_busy_wait(usec_to_wait);
#endif /* CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT */
SYS_PORT_TRACING_FUNC_EXIT(k_thread, busy_wait, usec_to_wait);
}
#ifdef CONFIG_USERSPACE
static inline void z_vrfy_k_busy_wait(uint32_t usec_to_wait)
{
z_impl_k_busy_wait(usec_to_wait);
}
#include <syscalls/k_busy_wait_mrsh.c>
#endif /* CONFIG_USERSPACE */
/* Returns the uptime expiration (relative to an unlocked "now"!) of a
* timeout object. When used correctly, this should be called once,
* synchronously with the user passing a new timeout value. It should
* not be used iteratively to adjust a timeout.
*/
uint64_t sys_clock_timeout_end_calc(k_timeout_t timeout)
{
k_ticks_t dt;
if (K_TIMEOUT_EQ(timeout, K_FOREVER)) {
return UINT64_MAX;
} else if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
return sys_clock_tick_get();
} else {
dt = timeout.ticks;
if (IS_ENABLED(CONFIG_TIMEOUT_64BIT) && Z_TICK_ABS(dt) >= 0) {
return Z_TICK_ABS(dt);
}
return sys_clock_tick_get() + MAX(1, dt);
}
}