zephyr/drivers/adc/adc_mcux_12b1msps_sar.c

319 lines
9.2 KiB
C

/*
* Copyright (c) 2021, STRIM LLC
*
* Based on adc_mcux_adc12.c, which are:
* Copyright (c) 2017-2018, NXP
* Copyright (c) 2019 Vestas Wind Systems A/S
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_mcux_12b1msps_sar
#include <zephyr/drivers/adc.h>
#include <fsl_adc.h>
#include <zephyr/drivers/pinctrl.h>
#define LOG_LEVEL CONFIG_ADC_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(adc_mcux_12b1msps_sar);
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
struct mcux_12b1msps_sar_adc_config {
ADC_Type *base;
adc_clock_source_t clock_src;
adc_clock_driver_t clock_drv;
adc_reference_voltage_source_t ref_src;
adc_sample_period_mode_t sample_period_mode;
void (*irq_config_func)(const struct device *dev);
const struct pinctrl_dev_config *pincfg;
};
struct mcux_12b1msps_sar_adc_data {
const struct device *dev;
struct adc_context ctx;
uint16_t *buffer;
uint16_t *repeat_buffer;
uint32_t channels;
uint8_t channel_id;
};
static int mcux_12b1msps_sar_adc_channel_setup(const struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
uint8_t channel_id = channel_cfg->channel_id;
if (channel_id > (ADC_HC_ADCH_MASK >> ADC_HC_ADCH_SHIFT)) {
LOG_ERR("Invalid channel %d", channel_id);
return -EINVAL;
}
if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
LOG_ERR("Unsupported channel acquisition time");
return -ENOTSUP;
}
if (channel_cfg->differential) {
LOG_ERR("Differential channels are not supported");
return -ENOTSUP;
}
if (channel_cfg->gain != ADC_GAIN_1) {
LOG_ERR("Unsupported channel gain %d", channel_cfg->gain);
return -ENOTSUP;
}
if (channel_cfg->reference != ADC_REF_INTERNAL) {
LOG_ERR("Unsupported channel reference");
return -ENOTSUP;
}
return 0;
}
static int mcux_12b1msps_sar_adc_start_read(const struct device *dev,
const struct adc_sequence *sequence)
{
const struct mcux_12b1msps_sar_adc_config *config = dev->config;
struct mcux_12b1msps_sar_adc_data *data = dev->data;
adc_hardware_average_mode_t mode;
adc_resolution_t resolution;
ADC_Type *base = config->base;
int error;
uint32_t tmp32;
switch (sequence->resolution) {
case 8:
resolution = kADC_Resolution8Bit;
break;
case 10:
resolution = kADC_Resolution10Bit;
break;
case 12:
resolution = kADC_Resolution12Bit;
break;
default:
LOG_ERR("Unsupported resolution %d", sequence->resolution);
return -ENOTSUP;
}
tmp32 = base->CFG & ~(ADC_CFG_MODE_MASK);
tmp32 |= ADC_CFG_MODE(resolution);
base->CFG = tmp32;
switch (sequence->oversampling) {
case 0:
mode = kADC_HardwareAverageDiasable;
break;
case 2:
mode = kADC_HardwareAverageCount4;
break;
case 3:
mode = kADC_HardwareAverageCount8;
break;
case 4:
mode = kADC_HardwareAverageCount16;
break;
case 5:
mode = kADC_HardwareAverageCount32;
break;
default:
LOG_ERR("Unsupported oversampling value %d",
sequence->oversampling);
return -ENOTSUP;
}
ADC_SetHardwareAverageConfig(config->base, mode);
data->buffer = sequence->buffer;
adc_context_start_read(&data->ctx, sequence);
error = adc_context_wait_for_completion(&data->ctx);
return error;
}
static int mcux_12b1msps_sar_adc_read_async(const struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
struct mcux_12b1msps_sar_adc_data *data = dev->data;
int error;
adc_context_lock(&data->ctx, async ? true : false, async);
error = mcux_12b1msps_sar_adc_start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
static int mcux_12b1msps_sar_adc_read(const struct device *dev,
const struct adc_sequence *sequence)
{
return mcux_12b1msps_sar_adc_read_async(dev, sequence, NULL);
}
static void mcux_12b1msps_sar_adc_start_channel(const struct device *dev)
{
const struct mcux_12b1msps_sar_adc_config *config = dev->config;
struct mcux_12b1msps_sar_adc_data *data = dev->data;
adc_channel_config_t channel_config;
uint32_t channel_group = 0U;
data->channel_id = find_lsb_set(data->channels) - 1;
LOG_DBG("Starting channel %d", data->channel_id);
channel_config.enableInterruptOnConversionCompleted = true;
channel_config.channelNumber = data->channel_id;
ADC_SetChannelConfig(config->base, channel_group, &channel_config);
}
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct mcux_12b1msps_sar_adc_data *data =
CONTAINER_OF(ctx, struct mcux_12b1msps_sar_adc_data, ctx);
data->channels = ctx->sequence.channels;
data->repeat_buffer = data->buffer;
mcux_12b1msps_sar_adc_start_channel(data->dev);
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
bool repeat_sampling)
{
struct mcux_12b1msps_sar_adc_data *data =
CONTAINER_OF(ctx, struct mcux_12b1msps_sar_adc_data, ctx);
if (repeat_sampling) {
data->buffer = data->repeat_buffer;
}
}
static void mcux_12b1msps_sar_adc_isr(const struct device *dev)
{
const struct mcux_12b1msps_sar_adc_config *config = dev->config;
struct mcux_12b1msps_sar_adc_data *data = dev->data;
ADC_Type *base = config->base;
uint32_t channel_group = 0U;
uint16_t result;
result = ADC_GetChannelConversionValue(base, channel_group);
LOG_DBG("Finished channel %d. Result is 0x%04x", data->channel_id,
result);
*data->buffer++ = result;
data->channels &= ~BIT(data->channel_id);
if (data->channels) {
mcux_12b1msps_sar_adc_start_channel(dev);
} else {
adc_context_on_sampling_done(&data->ctx, dev);
}
}
static int mcux_12b1msps_sar_adc_init(const struct device *dev)
{
const struct mcux_12b1msps_sar_adc_config *config = dev->config;
struct mcux_12b1msps_sar_adc_data *data = dev->data;
ADC_Type *base = config->base;
adc_config_t adc_config;
int err;
err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
if (err) {
return err;
}
ADC_GetDefaultConfig(&adc_config);
adc_config.referenceVoltageSource = config->ref_src;
adc_config.clockSource = config->clock_src;
adc_config.clockDriver = config->clock_drv;
adc_config.samplePeriodMode = config->sample_period_mode;
adc_config.resolution = kADC_Resolution12Bit;
adc_config.enableContinuousConversion = false;
adc_config.enableOverWrite = false;
adc_config.enableHighSpeed = false;
adc_config.enableLowPower = false;
adc_config.enableLongSample = false;
adc_config.enableAsynchronousClockOutput = true;
ADC_Init(base, &adc_config);
#if !(defined(FSL_FEATURE_ADC_SUPPORT_HARDWARE_TRIGGER_REMOVE) && \
FSL_FEATURE_ADC_SUPPORT_HARDWARE_TRIGGER_REMOVE)
ADC_EnableHardwareTrigger(base, false);
#endif
if (kStatus_Success == ADC_DoAutoCalibration(base)) {
LOG_DBG("ADC_DoAutoCalibration() Done.");
} else {
LOG_WRN("ADC_DoAutoCalibration() Failed.");
}
config->irq_config_func(dev);
data->dev = dev;
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
static const struct adc_driver_api mcux_12b1msps_sar_adc_driver_api = {
.channel_setup = mcux_12b1msps_sar_adc_channel_setup,
.read = mcux_12b1msps_sar_adc_read,
#ifdef CONFIG_ADC_ASYNC
.read_async = mcux_12b1msps_sar_adc_read_async,
#endif
.ref_internal = 3300,
};
#define ASSERT_WITHIN_RANGE(val, min, max, str) \
BUILD_ASSERT(val >= min && val <= max, str)
#define ASSERT_RT_ADC_CLK_DIV_VALID(val, str) \
BUILD_ASSERT(val == 1 || val == 2 || val == 4 || val == 8, str)
#define TO_RT_ADC_CLOCK_DIV(val) _DO_CONCAT(kADC_ClockDriver, val)
#define ACD_MCUX_12B1MSPS_SAR_INIT(n) \
static void mcux_12b1msps_sar_adc_config_func_##n(const struct device *dev); \
\
ASSERT_RT_ADC_CLK_DIV_VALID(DT_INST_PROP(n, clk_divider), \
"Invalid clock divider"); \
ASSERT_WITHIN_RANGE(DT_INST_PROP(n, sample_period_mode), 0, 3, \
"Invalid sample period mode"); \
PINCTRL_DT_INST_DEFINE(n); \
\
static const struct mcux_12b1msps_sar_adc_config mcux_12b1msps_sar_adc_config_##n = { \
.base = (ADC_Type *)DT_INST_REG_ADDR(n), \
.clock_src = kADC_ClockSourceAD, \
.clock_drv = \
TO_RT_ADC_CLOCK_DIV(DT_INST_PROP(n, clk_divider)), \
.ref_src = kADC_ReferenceVoltageSourceAlt0, \
.sample_period_mode = DT_INST_PROP(n, sample_period_mode), \
.irq_config_func = mcux_12b1msps_sar_adc_config_func_##n, \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
}; \
\
static struct mcux_12b1msps_sar_adc_data mcux_12b1msps_sar_adc_data_##n = { \
ADC_CONTEXT_INIT_TIMER(mcux_12b1msps_sar_adc_data_##n, ctx), \
ADC_CONTEXT_INIT_LOCK(mcux_12b1msps_sar_adc_data_##n, ctx), \
ADC_CONTEXT_INIT_SYNC(mcux_12b1msps_sar_adc_data_##n, ctx), \
}; \
\
DEVICE_DT_INST_DEFINE(n, &mcux_12b1msps_sar_adc_init, NULL, \
&mcux_12b1msps_sar_adc_data_##n, &mcux_12b1msps_sar_adc_config_##n, \
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \
&mcux_12b1msps_sar_adc_driver_api); \
\
static void mcux_12b1msps_sar_adc_config_func_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \
mcux_12b1msps_sar_adc_isr, DEVICE_DT_INST_GET(n), 0); \
\
irq_enable(DT_INST_IRQN(n)); \
}
DT_INST_FOREACH_STATUS_OKAY(ACD_MCUX_12B1MSPS_SAR_INIT)