1824 lines
52 KiB
C
1824 lines
52 KiB
C
/*
|
|
* Copyright (c) 2020 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Routines for managing virtual address spaces
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <kernel_arch_interface.h>
|
|
#include <zephyr/spinlock.h>
|
|
#include <mmu.h>
|
|
#include <zephyr/init.h>
|
|
#include <kernel_internal.h>
|
|
#include <zephyr/internal/syscall_handler.h>
|
|
#include <zephyr/toolchain.h>
|
|
#include <zephyr/linker/linker-defs.h>
|
|
#include <zephyr/sys/bitarray.h>
|
|
#include <zephyr/sys/check.h>
|
|
#include <zephyr/sys/math_extras.h>
|
|
#include <zephyr/timing/timing.h>
|
|
#include <zephyr/logging/log.h>
|
|
LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
|
|
|
|
#ifdef CONFIG_DEMAND_PAGING
|
|
#include <zephyr/kernel/mm/demand_paging.h>
|
|
#endif /* CONFIG_DEMAND_PAGING */
|
|
|
|
/*
|
|
* General terminology:
|
|
* - A page frame is a page-sized physical memory region in RAM. It is a
|
|
* container where a data page may be placed. It is always referred to by
|
|
* physical address. We have a convention of using uintptr_t for physical
|
|
* addresses. We instantiate a struct k_mem_page_frame to store metadata for
|
|
* every page frame.
|
|
*
|
|
* - A data page is a page-sized region of data. It may exist in a page frame,
|
|
* or be paged out to some backing store. Its location can always be looked
|
|
* up in the CPU's page tables (or equivalent) by virtual address.
|
|
* The data type will always be void * or in some cases uint8_t * when we
|
|
* want to do pointer arithmetic.
|
|
*/
|
|
|
|
/* Spinlock to protect any globals in this file and serialize page table
|
|
* updates in arch code
|
|
*/
|
|
struct k_spinlock z_mm_lock;
|
|
|
|
/*
|
|
* General page frame management
|
|
*/
|
|
|
|
/* Database of all RAM page frames */
|
|
struct k_mem_page_frame k_mem_page_frames[K_MEM_NUM_PAGE_FRAMES];
|
|
|
|
#if __ASSERT_ON
|
|
/* Indicator that k_mem_page_frames has been initialized, many of these APIs do
|
|
* not work before POST_KERNEL
|
|
*/
|
|
static bool page_frames_initialized;
|
|
#endif
|
|
|
|
/* Add colors to page table dumps to indicate mapping type */
|
|
#define COLOR_PAGE_FRAMES 1
|
|
|
|
#if COLOR_PAGE_FRAMES
|
|
#define ANSI_DEFAULT "\x1B" "[0m"
|
|
#define ANSI_RED "\x1B" "[1;31m"
|
|
#define ANSI_GREEN "\x1B" "[1;32m"
|
|
#define ANSI_YELLOW "\x1B" "[1;33m"
|
|
#define ANSI_BLUE "\x1B" "[1;34m"
|
|
#define ANSI_MAGENTA "\x1B" "[1;35m"
|
|
#define ANSI_CYAN "\x1B" "[1;36m"
|
|
#define ANSI_GREY "\x1B" "[1;90m"
|
|
|
|
#define COLOR(x) printk(_CONCAT(ANSI_, x))
|
|
#else
|
|
#define COLOR(x) do { } while (false)
|
|
#endif /* COLOR_PAGE_FRAMES */
|
|
|
|
/* LCOV_EXCL_START */
|
|
static void page_frame_dump(struct k_mem_page_frame *pf)
|
|
{
|
|
if (k_mem_page_frame_is_free(pf)) {
|
|
COLOR(GREY);
|
|
printk("-");
|
|
} else if (k_mem_page_frame_is_reserved(pf)) {
|
|
COLOR(CYAN);
|
|
printk("R");
|
|
} else if (k_mem_page_frame_is_busy(pf)) {
|
|
COLOR(MAGENTA);
|
|
printk("B");
|
|
} else if (k_mem_page_frame_is_pinned(pf)) {
|
|
COLOR(YELLOW);
|
|
printk("P");
|
|
} else if (k_mem_page_frame_is_available(pf)) {
|
|
COLOR(GREY);
|
|
printk(".");
|
|
} else if (k_mem_page_frame_is_mapped(pf)) {
|
|
COLOR(DEFAULT);
|
|
printk("M");
|
|
} else {
|
|
COLOR(RED);
|
|
printk("?");
|
|
}
|
|
}
|
|
|
|
void k_mem_page_frames_dump(void)
|
|
{
|
|
int column = 0;
|
|
|
|
__ASSERT(page_frames_initialized, "%s called too early", __func__);
|
|
printk("Physical memory from 0x%lx to 0x%lx\n",
|
|
K_MEM_PHYS_RAM_START, K_MEM_PHYS_RAM_END);
|
|
|
|
for (int i = 0; i < K_MEM_NUM_PAGE_FRAMES; i++) {
|
|
struct k_mem_page_frame *pf = &k_mem_page_frames[i];
|
|
|
|
page_frame_dump(pf);
|
|
|
|
column++;
|
|
if (column == 64) {
|
|
column = 0;
|
|
printk("\n");
|
|
}
|
|
}
|
|
|
|
COLOR(DEFAULT);
|
|
if (column != 0) {
|
|
printk("\n");
|
|
}
|
|
}
|
|
/* LCOV_EXCL_STOP */
|
|
|
|
#define VIRT_FOREACH(_base, _size, _pos) \
|
|
for ((_pos) = (_base); \
|
|
(_pos) < ((uint8_t *)(_base) + (_size)); (_pos) += CONFIG_MMU_PAGE_SIZE)
|
|
|
|
#define PHYS_FOREACH(_base, _size, _pos) \
|
|
for ((_pos) = (_base); \
|
|
(_pos) < ((uintptr_t)(_base) + (_size)); (_pos) += CONFIG_MMU_PAGE_SIZE)
|
|
|
|
|
|
/*
|
|
* Virtual address space management
|
|
*
|
|
* Call all of these functions with z_mm_lock held.
|
|
*
|
|
* Overall virtual memory map: When the kernel starts, it resides in
|
|
* virtual memory in the region K_MEM_KERNEL_VIRT_START to
|
|
* K_MEM_KERNEL_VIRT_END. Unused virtual memory past this, up to the limit
|
|
* noted by CONFIG_KERNEL_VM_SIZE may be used for runtime memory mappings.
|
|
*
|
|
* If CONFIG_ARCH_MAPS_ALL_RAM is set, we do not just map the kernel image,
|
|
* but have a mapping for all RAM in place. This is for special architectural
|
|
* purposes and does not otherwise affect page frame accounting or flags;
|
|
* the only guarantee is that such RAM mapping outside of the Zephyr image
|
|
* won't be disturbed by subsequent memory mapping calls.
|
|
*
|
|
* +--------------+ <- K_MEM_VIRT_RAM_START
|
|
* | Undefined VM | <- May contain ancillary regions like x86_64's locore
|
|
* +--------------+ <- K_MEM_KERNEL_VIRT_START (often == K_MEM_VIRT_RAM_START)
|
|
* | Mapping for |
|
|
* | main kernel |
|
|
* | image |
|
|
* | |
|
|
* | |
|
|
* +--------------+ <- K_MEM_VM_FREE_START
|
|
* | |
|
|
* | Unused, |
|
|
* | Available VM |
|
|
* | |
|
|
* |..............| <- mapping_pos (grows downward as more mappings are made)
|
|
* | Mapping |
|
|
* +--------------+
|
|
* | Mapping |
|
|
* +--------------+
|
|
* | ... |
|
|
* +--------------+
|
|
* | Mapping |
|
|
* +--------------+ <- mappings start here
|
|
* | Reserved | <- special purpose virtual page(s) of size K_MEM_VM_RESERVED
|
|
* +--------------+ <- K_MEM_VIRT_RAM_END
|
|
*/
|
|
|
|
/* Bitmap of virtual addresses where one bit corresponds to one page.
|
|
* This is being used for virt_region_alloc() to figure out which
|
|
* region of virtual addresses can be used for memory mapping.
|
|
*
|
|
* Note that bit #0 is the highest address so that allocation is
|
|
* done in reverse from highest address.
|
|
*/
|
|
SYS_BITARRAY_DEFINE_STATIC(virt_region_bitmap,
|
|
CONFIG_KERNEL_VM_SIZE / CONFIG_MMU_PAGE_SIZE);
|
|
|
|
static bool virt_region_inited;
|
|
|
|
#define Z_VIRT_REGION_START_ADDR K_MEM_VM_FREE_START
|
|
#define Z_VIRT_REGION_END_ADDR (K_MEM_VIRT_RAM_END - K_MEM_VM_RESERVED)
|
|
|
|
static inline uintptr_t virt_from_bitmap_offset(size_t offset, size_t size)
|
|
{
|
|
return POINTER_TO_UINT(K_MEM_VIRT_RAM_END)
|
|
- (offset * CONFIG_MMU_PAGE_SIZE) - size;
|
|
}
|
|
|
|
static inline size_t virt_to_bitmap_offset(void *vaddr, size_t size)
|
|
{
|
|
return (POINTER_TO_UINT(K_MEM_VIRT_RAM_END)
|
|
- POINTER_TO_UINT(vaddr) - size) / CONFIG_MMU_PAGE_SIZE;
|
|
}
|
|
|
|
static void virt_region_init(void)
|
|
{
|
|
size_t offset, num_bits;
|
|
|
|
/* There are regions where we should never map via
|
|
* k_mem_map() and k_mem_map_phys_bare(). Mark them as
|
|
* already allocated so they will never be used.
|
|
*/
|
|
|
|
if (K_MEM_VM_RESERVED > 0) {
|
|
/* Mark reserved region at end of virtual address space */
|
|
num_bits = K_MEM_VM_RESERVED / CONFIG_MMU_PAGE_SIZE;
|
|
(void)sys_bitarray_set_region(&virt_region_bitmap,
|
|
num_bits, 0);
|
|
}
|
|
|
|
/* Mark all bits up to Z_FREE_VM_START as allocated */
|
|
num_bits = POINTER_TO_UINT(K_MEM_VM_FREE_START)
|
|
- POINTER_TO_UINT(K_MEM_VIRT_RAM_START);
|
|
offset = virt_to_bitmap_offset(K_MEM_VIRT_RAM_START, num_bits);
|
|
num_bits /= CONFIG_MMU_PAGE_SIZE;
|
|
(void)sys_bitarray_set_region(&virt_region_bitmap,
|
|
num_bits, offset);
|
|
|
|
virt_region_inited = true;
|
|
}
|
|
|
|
static void virt_region_free(void *vaddr, size_t size)
|
|
{
|
|
size_t offset, num_bits;
|
|
uint8_t *vaddr_u8 = (uint8_t *)vaddr;
|
|
|
|
if (unlikely(!virt_region_inited)) {
|
|
virt_region_init();
|
|
}
|
|
|
|
#ifndef CONFIG_KERNEL_DIRECT_MAP
|
|
/* Without the need to support K_MEM_DIRECT_MAP, the region must be
|
|
* able to be represented in the bitmap. So this case is
|
|
* simple.
|
|
*/
|
|
|
|
__ASSERT((vaddr_u8 >= Z_VIRT_REGION_START_ADDR)
|
|
&& ((vaddr_u8 + size - 1) < Z_VIRT_REGION_END_ADDR),
|
|
"invalid virtual address region %p (%zu)", vaddr_u8, size);
|
|
if (!((vaddr_u8 >= Z_VIRT_REGION_START_ADDR)
|
|
&& ((vaddr_u8 + size - 1) < Z_VIRT_REGION_END_ADDR))) {
|
|
return;
|
|
}
|
|
|
|
offset = virt_to_bitmap_offset(vaddr, size);
|
|
num_bits = size / CONFIG_MMU_PAGE_SIZE;
|
|
(void)sys_bitarray_free(&virt_region_bitmap, num_bits, offset);
|
|
#else /* !CONFIG_KERNEL_DIRECT_MAP */
|
|
/* With K_MEM_DIRECT_MAP, the region can be outside of the virtual
|
|
* memory space, wholly within it, or overlap partially.
|
|
* So additional processing is needed to make sure we only
|
|
* mark the pages within the bitmap.
|
|
*/
|
|
if (((vaddr_u8 >= Z_VIRT_REGION_START_ADDR) &&
|
|
(vaddr_u8 < Z_VIRT_REGION_END_ADDR)) ||
|
|
(((vaddr_u8 + size - 1) >= Z_VIRT_REGION_START_ADDR) &&
|
|
((vaddr_u8 + size - 1) < Z_VIRT_REGION_END_ADDR))) {
|
|
uint8_t *adjusted_start = MAX(vaddr_u8, Z_VIRT_REGION_START_ADDR);
|
|
uint8_t *adjusted_end = MIN(vaddr_u8 + size,
|
|
Z_VIRT_REGION_END_ADDR);
|
|
size_t adjusted_sz = adjusted_end - adjusted_start;
|
|
|
|
offset = virt_to_bitmap_offset(adjusted_start, adjusted_sz);
|
|
num_bits = adjusted_sz / CONFIG_MMU_PAGE_SIZE;
|
|
(void)sys_bitarray_free(&virt_region_bitmap, num_bits, offset);
|
|
}
|
|
#endif /* !CONFIG_KERNEL_DIRECT_MAP */
|
|
}
|
|
|
|
static void *virt_region_alloc(size_t size, size_t align)
|
|
{
|
|
uintptr_t dest_addr;
|
|
size_t alloc_size;
|
|
size_t offset;
|
|
size_t num_bits;
|
|
int ret;
|
|
|
|
if (unlikely(!virt_region_inited)) {
|
|
virt_region_init();
|
|
}
|
|
|
|
/* Possibly request more pages to ensure we can get an aligned virtual address */
|
|
num_bits = (size + align - CONFIG_MMU_PAGE_SIZE) / CONFIG_MMU_PAGE_SIZE;
|
|
alloc_size = num_bits * CONFIG_MMU_PAGE_SIZE;
|
|
ret = sys_bitarray_alloc(&virt_region_bitmap, num_bits, &offset);
|
|
if (ret != 0) {
|
|
LOG_ERR("insufficient virtual address space (requested %zu)",
|
|
size);
|
|
return NULL;
|
|
}
|
|
|
|
/* Remember that bit #0 in bitmap corresponds to the highest
|
|
* virtual address. So here we need to go downwards (backwards?)
|
|
* to get the starting address of the allocated region.
|
|
*/
|
|
dest_addr = virt_from_bitmap_offset(offset, alloc_size);
|
|
|
|
if (alloc_size > size) {
|
|
uintptr_t aligned_dest_addr = ROUND_UP(dest_addr, align);
|
|
|
|
/* Here is the memory organization when trying to get an aligned
|
|
* virtual address:
|
|
*
|
|
* +--------------+ <- K_MEM_VIRT_RAM_START
|
|
* | Undefined VM |
|
|
* +--------------+ <- K_MEM_KERNEL_VIRT_START (often == K_MEM_VIRT_RAM_START)
|
|
* | Mapping for |
|
|
* | main kernel |
|
|
* | image |
|
|
* | |
|
|
* | |
|
|
* +--------------+ <- K_MEM_VM_FREE_START
|
|
* | ... |
|
|
* +==============+ <- dest_addr
|
|
* | Unused |
|
|
* |..............| <- aligned_dest_addr
|
|
* | |
|
|
* | Aligned |
|
|
* | Mapping |
|
|
* | |
|
|
* |..............| <- aligned_dest_addr + size
|
|
* | Unused |
|
|
* +==============+ <- offset from K_MEM_VIRT_RAM_END == dest_addr + alloc_size
|
|
* | ... |
|
|
* +--------------+
|
|
* | Mapping |
|
|
* +--------------+
|
|
* | Reserved |
|
|
* +--------------+ <- K_MEM_VIRT_RAM_END
|
|
*/
|
|
|
|
/* Free the two unused regions */
|
|
virt_region_free(UINT_TO_POINTER(dest_addr),
|
|
aligned_dest_addr - dest_addr);
|
|
if (((dest_addr + alloc_size) - (aligned_dest_addr + size)) > 0) {
|
|
virt_region_free(UINT_TO_POINTER(aligned_dest_addr + size),
|
|
(dest_addr + alloc_size) - (aligned_dest_addr + size));
|
|
}
|
|
|
|
dest_addr = aligned_dest_addr;
|
|
}
|
|
|
|
/* Need to make sure this does not step into kernel memory */
|
|
if (dest_addr < POINTER_TO_UINT(Z_VIRT_REGION_START_ADDR)) {
|
|
(void)sys_bitarray_free(&virt_region_bitmap, size, offset);
|
|
return NULL;
|
|
}
|
|
|
|
return UINT_TO_POINTER(dest_addr);
|
|
}
|
|
|
|
/*
|
|
* Free page frames management
|
|
*
|
|
* Call all of these functions with z_mm_lock held.
|
|
*/
|
|
|
|
/* Linked list of unused and available page frames.
|
|
*
|
|
* TODO: This is very simple and treats all free page frames as being equal.
|
|
* However, there are use-cases to consolidate free pages such that entire
|
|
* SRAM banks can be switched off to save power, and so obtaining free pages
|
|
* may require a more complex ontology which prefers page frames in RAM banks
|
|
* which are still active.
|
|
*
|
|
* This implies in the future there may be multiple slists managing physical
|
|
* pages. Each page frame will still just have one snode link.
|
|
*/
|
|
static sys_sflist_t free_page_frame_list;
|
|
|
|
/* Number of unused and available free page frames.
|
|
* This information may go stale immediately.
|
|
*/
|
|
static size_t z_free_page_count;
|
|
|
|
#define PF_ASSERT(pf, expr, fmt, ...) \
|
|
__ASSERT(expr, "page frame 0x%lx: " fmt, k_mem_page_frame_to_phys(pf), \
|
|
##__VA_ARGS__)
|
|
|
|
/* Get an unused page frame. don't care which one, or NULL if there are none */
|
|
static struct k_mem_page_frame *free_page_frame_list_get(void)
|
|
{
|
|
sys_sfnode_t *node;
|
|
struct k_mem_page_frame *pf = NULL;
|
|
|
|
node = sys_sflist_get(&free_page_frame_list);
|
|
if (node != NULL) {
|
|
z_free_page_count--;
|
|
pf = CONTAINER_OF(node, struct k_mem_page_frame, node);
|
|
PF_ASSERT(pf, k_mem_page_frame_is_free(pf),
|
|
"on free list but not free");
|
|
pf->va_and_flags = 0;
|
|
}
|
|
|
|
return pf;
|
|
}
|
|
|
|
/* Release a page frame back into the list of free pages */
|
|
static void free_page_frame_list_put(struct k_mem_page_frame *pf)
|
|
{
|
|
PF_ASSERT(pf, k_mem_page_frame_is_available(pf),
|
|
"unavailable page put on free list");
|
|
|
|
sys_sfnode_init(&pf->node, K_MEM_PAGE_FRAME_FREE);
|
|
sys_sflist_append(&free_page_frame_list, &pf->node);
|
|
z_free_page_count++;
|
|
}
|
|
|
|
static void free_page_frame_list_init(void)
|
|
{
|
|
sys_sflist_init(&free_page_frame_list);
|
|
}
|
|
|
|
static void page_frame_free_locked(struct k_mem_page_frame *pf)
|
|
{
|
|
pf->va_and_flags = 0;
|
|
free_page_frame_list_put(pf);
|
|
}
|
|
|
|
/*
|
|
* Memory Mapping
|
|
*/
|
|
|
|
/* Called after the frame is mapped in the arch layer, to update our
|
|
* local ontology (and do some assertions while we're at it)
|
|
*/
|
|
static void frame_mapped_set(struct k_mem_page_frame *pf, void *addr)
|
|
{
|
|
PF_ASSERT(pf, !k_mem_page_frame_is_free(pf),
|
|
"attempted to map a page frame on the free list");
|
|
PF_ASSERT(pf, !k_mem_page_frame_is_reserved(pf),
|
|
"attempted to map a reserved page frame");
|
|
|
|
/* We do allow multiple mappings for pinned page frames
|
|
* since we will never need to reverse map them.
|
|
* This is uncommon, use-cases are for things like the
|
|
* Zephyr equivalent of VSDOs
|
|
*/
|
|
PF_ASSERT(pf, !k_mem_page_frame_is_mapped(pf) || k_mem_page_frame_is_pinned(pf),
|
|
"non-pinned and already mapped to %p",
|
|
k_mem_page_frame_to_virt(pf));
|
|
|
|
uintptr_t flags_mask = CONFIG_MMU_PAGE_SIZE - 1;
|
|
uintptr_t va = (uintptr_t)addr & ~flags_mask;
|
|
|
|
pf->va_and_flags &= flags_mask;
|
|
pf->va_and_flags |= va | K_MEM_PAGE_FRAME_MAPPED;
|
|
}
|
|
|
|
/* LCOV_EXCL_START */
|
|
/* Go through page frames to find the physical address mapped
|
|
* by a virtual address.
|
|
*
|
|
* @param[in] virt Virtual Address
|
|
* @param[out] phys Physical address mapped to the input virtual address
|
|
* if such mapping exists.
|
|
*
|
|
* @retval 0 if mapping is found and valid
|
|
* @retval -EFAULT if virtual address is not mapped
|
|
*/
|
|
static int virt_to_page_frame(void *virt, uintptr_t *phys)
|
|
{
|
|
uintptr_t paddr;
|
|
struct k_mem_page_frame *pf;
|
|
int ret = -EFAULT;
|
|
|
|
K_MEM_PAGE_FRAME_FOREACH(paddr, pf) {
|
|
if (k_mem_page_frame_is_mapped(pf)) {
|
|
if (virt == k_mem_page_frame_to_virt(pf)) {
|
|
ret = 0;
|
|
if (phys != NULL) {
|
|
*phys = k_mem_page_frame_to_phys(pf);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
/* LCOV_EXCL_STOP */
|
|
|
|
__weak FUNC_ALIAS(virt_to_page_frame, arch_page_phys_get, int);
|
|
|
|
#ifdef CONFIG_DEMAND_PAGING
|
|
static int page_frame_prepare_locked(struct k_mem_page_frame *pf, bool *dirty_ptr,
|
|
bool page_in, uintptr_t *location_ptr);
|
|
|
|
static inline void do_backing_store_page_in(uintptr_t location);
|
|
static inline void do_backing_store_page_out(uintptr_t location);
|
|
#endif /* CONFIG_DEMAND_PAGING */
|
|
|
|
/* Allocate a free page frame, and map it to a specified virtual address
|
|
*
|
|
* TODO: Add optional support for copy-on-write mappings to a zero page instead
|
|
* of allocating, in which case page frames will be allocated lazily as
|
|
* the mappings to the zero page get touched. This will avoid expensive
|
|
* page-ins as memory is mapped and physical RAM or backing store storage will
|
|
* not be used if the mapped memory is unused. The cost is an empty physical
|
|
* page of zeroes.
|
|
*/
|
|
static int map_anon_page(void *addr, uint32_t flags)
|
|
{
|
|
struct k_mem_page_frame *pf;
|
|
uintptr_t phys;
|
|
bool lock = (flags & K_MEM_MAP_LOCK) != 0U;
|
|
|
|
pf = free_page_frame_list_get();
|
|
if (pf == NULL) {
|
|
#ifdef CONFIG_DEMAND_PAGING
|
|
uintptr_t location;
|
|
bool dirty;
|
|
int ret;
|
|
|
|
pf = k_mem_paging_eviction_select(&dirty);
|
|
__ASSERT(pf != NULL, "failed to get a page frame");
|
|
LOG_DBG("evicting %p at 0x%lx",
|
|
k_mem_page_frame_to_virt(pf),
|
|
k_mem_page_frame_to_phys(pf));
|
|
ret = page_frame_prepare_locked(pf, &dirty, false, &location);
|
|
if (ret != 0) {
|
|
return -ENOMEM;
|
|
}
|
|
if (dirty) {
|
|
do_backing_store_page_out(location);
|
|
}
|
|
pf->va_and_flags = 0;
|
|
#else
|
|
return -ENOMEM;
|
|
#endif /* CONFIG_DEMAND_PAGING */
|
|
}
|
|
|
|
phys = k_mem_page_frame_to_phys(pf);
|
|
arch_mem_map(addr, phys, CONFIG_MMU_PAGE_SIZE, flags);
|
|
|
|
if (lock) {
|
|
k_mem_page_frame_set(pf, K_MEM_PAGE_FRAME_PINNED);
|
|
}
|
|
frame_mapped_set(pf, addr);
|
|
#ifdef CONFIG_DEMAND_PAGING
|
|
if (!lock) {
|
|
k_mem_paging_eviction_add(pf);
|
|
}
|
|
#endif
|
|
|
|
LOG_DBG("memory mapping anon page %p -> 0x%lx", addr, phys);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void *k_mem_map_phys_guard(uintptr_t phys, size_t size, uint32_t flags, bool is_anon)
|
|
{
|
|
uint8_t *dst;
|
|
size_t total_size;
|
|
int ret;
|
|
k_spinlock_key_t key;
|
|
uint8_t *pos;
|
|
bool uninit = (flags & K_MEM_MAP_UNINIT) != 0U;
|
|
|
|
__ASSERT(!is_anon || (is_anon && page_frames_initialized),
|
|
"%s called too early", __func__);
|
|
__ASSERT((flags & K_MEM_CACHE_MASK) == 0U,
|
|
"%s does not support explicit cache settings", __func__);
|
|
|
|
if (((flags & K_MEM_PERM_USER) != 0U) &&
|
|
((flags & K_MEM_MAP_UNINIT) != 0U)) {
|
|
LOG_ERR("user access to anonymous uninitialized pages is forbidden");
|
|
return NULL;
|
|
}
|
|
if ((size % CONFIG_MMU_PAGE_SIZE) != 0U) {
|
|
LOG_ERR("unaligned size %zu passed to %s", size, __func__);
|
|
return NULL;
|
|
}
|
|
if (size == 0) {
|
|
LOG_ERR("zero sized memory mapping");
|
|
return NULL;
|
|
}
|
|
|
|
/* Need extra for the guard pages (before and after) which we
|
|
* won't map.
|
|
*/
|
|
if (size_add_overflow(size, CONFIG_MMU_PAGE_SIZE * 2, &total_size)) {
|
|
LOG_ERR("too large size %zu passed to %s", size, __func__);
|
|
return NULL;
|
|
}
|
|
|
|
key = k_spin_lock(&z_mm_lock);
|
|
|
|
dst = virt_region_alloc(total_size, CONFIG_MMU_PAGE_SIZE);
|
|
if (dst == NULL) {
|
|
/* Address space has no free region */
|
|
goto out;
|
|
}
|
|
|
|
/* Unmap both guard pages to make sure accessing them
|
|
* will generate fault.
|
|
*/
|
|
arch_mem_unmap(dst, CONFIG_MMU_PAGE_SIZE);
|
|
arch_mem_unmap(dst + CONFIG_MMU_PAGE_SIZE + size,
|
|
CONFIG_MMU_PAGE_SIZE);
|
|
|
|
/* Skip over the "before" guard page in returned address. */
|
|
dst += CONFIG_MMU_PAGE_SIZE;
|
|
|
|
if (is_anon) {
|
|
/* Mapping from anonymous memory */
|
|
flags |= K_MEM_CACHE_WB;
|
|
#ifdef CONFIG_DEMAND_MAPPING
|
|
if ((flags & K_MEM_MAP_LOCK) == 0) {
|
|
flags |= K_MEM_MAP_UNPAGED;
|
|
VIRT_FOREACH(dst, size, pos) {
|
|
arch_mem_map(pos,
|
|
uninit ? ARCH_UNPAGED_ANON_UNINIT
|
|
: ARCH_UNPAGED_ANON_ZERO,
|
|
CONFIG_MMU_PAGE_SIZE, flags);
|
|
}
|
|
LOG_DBG("memory mapping anon pages %p to %p unpaged", dst, pos-1);
|
|
/* skip the memset() below */
|
|
uninit = true;
|
|
} else
|
|
#endif
|
|
{
|
|
VIRT_FOREACH(dst, size, pos) {
|
|
ret = map_anon_page(pos, flags);
|
|
|
|
if (ret != 0) {
|
|
/* TODO:
|
|
* call k_mem_unmap(dst, pos - dst)
|
|
* when implemented in #28990 and
|
|
* release any guard virtual page as well.
|
|
*/
|
|
dst = NULL;
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* Mapping known physical memory.
|
|
*
|
|
* arch_mem_map() is a void function and does not return
|
|
* anything. Arch code usually uses ASSERT() to catch
|
|
* mapping errors. Assume this works correctly for now.
|
|
*/
|
|
arch_mem_map(dst, phys, size, flags);
|
|
}
|
|
|
|
out:
|
|
k_spin_unlock(&z_mm_lock, key);
|
|
|
|
if (dst != NULL && !uninit) {
|
|
/* If we later implement mappings to a copy-on-write
|
|
* zero page, won't need this step
|
|
*/
|
|
memset(dst, 0, size);
|
|
}
|
|
|
|
return dst;
|
|
}
|
|
|
|
void k_mem_unmap_phys_guard(void *addr, size_t size, bool is_anon)
|
|
{
|
|
uintptr_t phys;
|
|
uint8_t *pos;
|
|
struct k_mem_page_frame *pf;
|
|
k_spinlock_key_t key;
|
|
size_t total_size;
|
|
int ret;
|
|
|
|
/* Need space for the "before" guard page */
|
|
__ASSERT_NO_MSG(POINTER_TO_UINT(addr) >= CONFIG_MMU_PAGE_SIZE);
|
|
|
|
/* Make sure address range is still valid after accounting
|
|
* for two guard pages.
|
|
*/
|
|
pos = (uint8_t *)addr - CONFIG_MMU_PAGE_SIZE;
|
|
k_mem_assert_virtual_region(pos, size + (CONFIG_MMU_PAGE_SIZE * 2));
|
|
|
|
key = k_spin_lock(&z_mm_lock);
|
|
|
|
/* Check if both guard pages are unmapped.
|
|
* Bail if not, as this is probably a region not mapped
|
|
* using k_mem_map().
|
|
*/
|
|
pos = addr;
|
|
ret = arch_page_phys_get(pos - CONFIG_MMU_PAGE_SIZE, NULL);
|
|
if (ret == 0) {
|
|
__ASSERT(ret == 0,
|
|
"%s: cannot find preceding guard page for (%p, %zu)",
|
|
__func__, addr, size);
|
|
goto out;
|
|
}
|
|
|
|
ret = arch_page_phys_get(pos + size, NULL);
|
|
if (ret == 0) {
|
|
__ASSERT(ret == 0,
|
|
"%s: cannot find succeeding guard page for (%p, %zu)",
|
|
__func__, addr, size);
|
|
goto out;
|
|
}
|
|
|
|
if (is_anon) {
|
|
/* Unmapping anonymous memory */
|
|
VIRT_FOREACH(addr, size, pos) {
|
|
#ifdef CONFIG_DEMAND_PAGING
|
|
enum arch_page_location status;
|
|
uintptr_t location;
|
|
|
|
status = arch_page_location_get(pos, &location);
|
|
switch (status) {
|
|
case ARCH_PAGE_LOCATION_PAGED_OUT:
|
|
/*
|
|
* No pf is associated with this mapping.
|
|
* Simply get rid of the MMU entry and free
|
|
* corresponding backing store.
|
|
*/
|
|
arch_mem_unmap(pos, CONFIG_MMU_PAGE_SIZE);
|
|
k_mem_paging_backing_store_location_free(location);
|
|
continue;
|
|
case ARCH_PAGE_LOCATION_PAGED_IN:
|
|
/*
|
|
* The page is in memory but it may not be
|
|
* accessible in order to manage tracking
|
|
* of the ARCH_DATA_PAGE_ACCESSED flag
|
|
* meaning arch_page_phys_get() could fail.
|
|
* Still, we know the actual phys address.
|
|
*/
|
|
phys = location;
|
|
ret = 0;
|
|
break;
|
|
default:
|
|
ret = arch_page_phys_get(pos, &phys);
|
|
break;
|
|
}
|
|
#else
|
|
ret = arch_page_phys_get(pos, &phys);
|
|
#endif
|
|
__ASSERT(ret == 0,
|
|
"%s: cannot unmap an unmapped address %p",
|
|
__func__, pos);
|
|
if (ret != 0) {
|
|
/* Found an address not mapped. Do not continue. */
|
|
goto out;
|
|
}
|
|
|
|
__ASSERT(k_mem_is_page_frame(phys),
|
|
"%s: 0x%lx is not a page frame", __func__, phys);
|
|
if (!k_mem_is_page_frame(phys)) {
|
|
/* Physical address has no corresponding page frame
|
|
* description in the page frame array.
|
|
* This should not happen. Do not continue.
|
|
*/
|
|
goto out;
|
|
}
|
|
|
|
/* Grab the corresponding page frame from physical address */
|
|
pf = k_mem_phys_to_page_frame(phys);
|
|
|
|
__ASSERT(k_mem_page_frame_is_mapped(pf),
|
|
"%s: 0x%lx is not a mapped page frame", __func__, phys);
|
|
if (!k_mem_page_frame_is_mapped(pf)) {
|
|
/* Page frame is not marked mapped.
|
|
* This should not happen. Do not continue.
|
|
*/
|
|
goto out;
|
|
}
|
|
|
|
arch_mem_unmap(pos, CONFIG_MMU_PAGE_SIZE);
|
|
#ifdef CONFIG_DEMAND_PAGING
|
|
if (!k_mem_page_frame_is_pinned(pf)) {
|
|
k_mem_paging_eviction_remove(pf);
|
|
}
|
|
#endif
|
|
|
|
/* Put the page frame back into free list */
|
|
page_frame_free_locked(pf);
|
|
}
|
|
} else {
|
|
/*
|
|
* Unmapping previous mapped memory with specific physical address.
|
|
*
|
|
* Note that we don't have to unmap the guard pages, as they should
|
|
* have been unmapped. We just need to unmapped the in-between
|
|
* region [addr, (addr + size)).
|
|
*/
|
|
arch_mem_unmap(addr, size);
|
|
}
|
|
|
|
/* There are guard pages just before and after the mapped
|
|
* region. So we also need to free them from the bitmap.
|
|
*/
|
|
pos = (uint8_t *)addr - CONFIG_MMU_PAGE_SIZE;
|
|
total_size = size + (CONFIG_MMU_PAGE_SIZE * 2);
|
|
virt_region_free(pos, total_size);
|
|
|
|
out:
|
|
k_spin_unlock(&z_mm_lock, key);
|
|
}
|
|
|
|
int k_mem_update_flags(void *addr, size_t size, uint32_t flags)
|
|
{
|
|
uintptr_t phys;
|
|
k_spinlock_key_t key;
|
|
int ret;
|
|
|
|
k_mem_assert_virtual_region(addr, size);
|
|
|
|
key = k_spin_lock(&z_mm_lock);
|
|
|
|
/*
|
|
* We can achieve desired result without explicit architecture support
|
|
* by unmapping and remapping the same physical memory using new flags.
|
|
*/
|
|
|
|
ret = arch_page_phys_get(addr, &phys);
|
|
if (ret < 0) {
|
|
goto out;
|
|
}
|
|
|
|
/* TODO: detect and handle paged-out memory as well */
|
|
|
|
arch_mem_unmap(addr, size);
|
|
arch_mem_map(addr, phys, size, flags);
|
|
|
|
out:
|
|
k_spin_unlock(&z_mm_lock, key);
|
|
return ret;
|
|
}
|
|
|
|
size_t k_mem_free_get(void)
|
|
{
|
|
size_t ret;
|
|
k_spinlock_key_t key;
|
|
|
|
__ASSERT(page_frames_initialized, "%s called too early", __func__);
|
|
|
|
key = k_spin_lock(&z_mm_lock);
|
|
#ifdef CONFIG_DEMAND_PAGING
|
|
if (z_free_page_count > CONFIG_DEMAND_PAGING_PAGE_FRAMES_RESERVE) {
|
|
ret = z_free_page_count - CONFIG_DEMAND_PAGING_PAGE_FRAMES_RESERVE;
|
|
} else {
|
|
ret = 0;
|
|
}
|
|
#else
|
|
ret = z_free_page_count;
|
|
#endif /* CONFIG_DEMAND_PAGING */
|
|
k_spin_unlock(&z_mm_lock, key);
|
|
|
|
return ret * (size_t)CONFIG_MMU_PAGE_SIZE;
|
|
}
|
|
|
|
/* Get the default virtual region alignment, here the default MMU page size
|
|
*
|
|
* @param[in] phys Physical address of region to be mapped, aligned to MMU_PAGE_SIZE
|
|
* @param[in] size Size of region to be mapped, aligned to MMU_PAGE_SIZE
|
|
*
|
|
* @retval alignment to apply on the virtual address of this region
|
|
*/
|
|
static size_t virt_region_align(uintptr_t phys, size_t size)
|
|
{
|
|
ARG_UNUSED(phys);
|
|
ARG_UNUSED(size);
|
|
|
|
return CONFIG_MMU_PAGE_SIZE;
|
|
}
|
|
|
|
__weak FUNC_ALIAS(virt_region_align, arch_virt_region_align, size_t);
|
|
|
|
/* This may be called from arch early boot code before z_cstart() is invoked.
|
|
* Data will be copied and BSS zeroed, but this must not rely on any
|
|
* initialization functions being called prior to work correctly.
|
|
*/
|
|
void k_mem_map_phys_bare(uint8_t **virt_ptr, uintptr_t phys, size_t size, uint32_t flags)
|
|
{
|
|
uintptr_t aligned_phys, addr_offset;
|
|
size_t aligned_size, align_boundary;
|
|
k_spinlock_key_t key;
|
|
uint8_t *dest_addr;
|
|
size_t num_bits;
|
|
size_t offset;
|
|
|
|
#ifndef CONFIG_KERNEL_DIRECT_MAP
|
|
__ASSERT(!(flags & K_MEM_DIRECT_MAP), "The direct-map is not enabled");
|
|
#endif /* CONFIG_KERNEL_DIRECT_MAP */
|
|
addr_offset = k_mem_region_align(&aligned_phys, &aligned_size,
|
|
phys, size,
|
|
CONFIG_MMU_PAGE_SIZE);
|
|
__ASSERT(aligned_size != 0U, "0-length mapping at 0x%lx", aligned_phys);
|
|
__ASSERT(aligned_phys < (aligned_phys + (aligned_size - 1)),
|
|
"wraparound for physical address 0x%lx (size %zu)",
|
|
aligned_phys, aligned_size);
|
|
|
|
align_boundary = arch_virt_region_align(aligned_phys, aligned_size);
|
|
|
|
key = k_spin_lock(&z_mm_lock);
|
|
|
|
if (IS_ENABLED(CONFIG_KERNEL_DIRECT_MAP) &&
|
|
(flags & K_MEM_DIRECT_MAP)) {
|
|
dest_addr = (uint8_t *)aligned_phys;
|
|
|
|
/* Mark the region of virtual memory bitmap as used
|
|
* if the region overlaps the virtual memory space.
|
|
*
|
|
* Basically if either end of region is within
|
|
* virtual memory space, we need to mark the bits.
|
|
*/
|
|
|
|
if (IN_RANGE(aligned_phys,
|
|
(uintptr_t)K_MEM_VIRT_RAM_START,
|
|
(uintptr_t)(K_MEM_VIRT_RAM_END - 1)) ||
|
|
IN_RANGE(aligned_phys + aligned_size - 1,
|
|
(uintptr_t)K_MEM_VIRT_RAM_START,
|
|
(uintptr_t)(K_MEM_VIRT_RAM_END - 1))) {
|
|
uint8_t *adjusted_start = MAX(dest_addr, K_MEM_VIRT_RAM_START);
|
|
uint8_t *adjusted_end = MIN(dest_addr + aligned_size,
|
|
K_MEM_VIRT_RAM_END);
|
|
size_t adjusted_sz = adjusted_end - adjusted_start;
|
|
|
|
num_bits = adjusted_sz / CONFIG_MMU_PAGE_SIZE;
|
|
offset = virt_to_bitmap_offset(adjusted_start, adjusted_sz);
|
|
if (sys_bitarray_test_and_set_region(
|
|
&virt_region_bitmap, num_bits, offset, true)) {
|
|
goto fail;
|
|
}
|
|
}
|
|
} else {
|
|
/* Obtain an appropriately sized chunk of virtual memory */
|
|
dest_addr = virt_region_alloc(aligned_size, align_boundary);
|
|
if (!dest_addr) {
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* If this fails there's something amiss with virt_region_get */
|
|
__ASSERT((uintptr_t)dest_addr <
|
|
((uintptr_t)dest_addr + (size - 1)),
|
|
"wraparound for virtual address %p (size %zu)",
|
|
dest_addr, size);
|
|
|
|
LOG_DBG("arch_mem_map(%p, 0x%lx, %zu, %x) offset %lu", dest_addr,
|
|
aligned_phys, aligned_size, flags, addr_offset);
|
|
|
|
arch_mem_map(dest_addr, aligned_phys, aligned_size, flags);
|
|
k_spin_unlock(&z_mm_lock, key);
|
|
|
|
*virt_ptr = dest_addr + addr_offset;
|
|
return;
|
|
fail:
|
|
/* May re-visit this in the future, but for now running out of
|
|
* virtual address space or failing the arch_mem_map() call is
|
|
* an unrecoverable situation.
|
|
*
|
|
* Other problems not related to resource exhaustion we leave as
|
|
* assertions since they are clearly programming mistakes.
|
|
*/
|
|
LOG_ERR("memory mapping 0x%lx (size %zu, flags 0x%x) failed",
|
|
phys, size, flags);
|
|
k_panic();
|
|
}
|
|
|
|
void k_mem_unmap_phys_bare(uint8_t *virt, size_t size)
|
|
{
|
|
uintptr_t aligned_virt, addr_offset;
|
|
size_t aligned_size;
|
|
k_spinlock_key_t key;
|
|
|
|
addr_offset = k_mem_region_align(&aligned_virt, &aligned_size,
|
|
POINTER_TO_UINT(virt), size,
|
|
CONFIG_MMU_PAGE_SIZE);
|
|
__ASSERT(aligned_size != 0U, "0-length mapping at 0x%lx", aligned_virt);
|
|
__ASSERT(aligned_virt < (aligned_virt + (aligned_size - 1)),
|
|
"wraparound for virtual address 0x%lx (size %zu)",
|
|
aligned_virt, aligned_size);
|
|
|
|
key = k_spin_lock(&z_mm_lock);
|
|
|
|
LOG_DBG("arch_mem_unmap(0x%lx, %zu) offset %lu",
|
|
aligned_virt, aligned_size, addr_offset);
|
|
|
|
arch_mem_unmap(UINT_TO_POINTER(aligned_virt), aligned_size);
|
|
virt_region_free(UINT_TO_POINTER(aligned_virt), aligned_size);
|
|
k_spin_unlock(&z_mm_lock, key);
|
|
}
|
|
|
|
/*
|
|
* Miscellaneous
|
|
*/
|
|
|
|
size_t k_mem_region_align(uintptr_t *aligned_addr, size_t *aligned_size,
|
|
uintptr_t addr, size_t size, size_t align)
|
|
{
|
|
size_t addr_offset;
|
|
|
|
/* The actual mapped region must be page-aligned. Round down the
|
|
* physical address and pad the region size appropriately
|
|
*/
|
|
*aligned_addr = ROUND_DOWN(addr, align);
|
|
addr_offset = addr - *aligned_addr;
|
|
*aligned_size = ROUND_UP(size + addr_offset, align);
|
|
|
|
return addr_offset;
|
|
}
|
|
|
|
#if defined(CONFIG_LINKER_USE_BOOT_SECTION) || defined(CONFIG_LINKER_USE_PINNED_SECTION)
|
|
static void mark_linker_section_pinned(void *start_addr, void *end_addr,
|
|
bool pin)
|
|
{
|
|
struct k_mem_page_frame *pf;
|
|
uint8_t *addr;
|
|
|
|
uintptr_t pinned_start = ROUND_DOWN(POINTER_TO_UINT(start_addr),
|
|
CONFIG_MMU_PAGE_SIZE);
|
|
uintptr_t pinned_end = ROUND_UP(POINTER_TO_UINT(end_addr),
|
|
CONFIG_MMU_PAGE_SIZE);
|
|
size_t pinned_size = pinned_end - pinned_start;
|
|
|
|
VIRT_FOREACH(UINT_TO_POINTER(pinned_start), pinned_size, addr)
|
|
{
|
|
pf = k_mem_phys_to_page_frame(K_MEM_BOOT_VIRT_TO_PHYS(addr));
|
|
frame_mapped_set(pf, addr);
|
|
|
|
if (pin) {
|
|
k_mem_page_frame_set(pf, K_MEM_PAGE_FRAME_PINNED);
|
|
} else {
|
|
k_mem_page_frame_clear(pf, K_MEM_PAGE_FRAME_PINNED);
|
|
#ifdef CONFIG_DEMAND_PAGING
|
|
if (k_mem_page_frame_is_evictable(pf)) {
|
|
k_mem_paging_eviction_add(pf);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
#endif /* CONFIG_LINKER_USE_BOOT_SECTION) || CONFIG_LINKER_USE_PINNED_SECTION */
|
|
|
|
#ifdef CONFIG_LINKER_USE_ONDEMAND_SECTION
|
|
static void z_paging_ondemand_section_map(void)
|
|
{
|
|
uint8_t *addr;
|
|
size_t size;
|
|
uintptr_t location;
|
|
uint32_t flags;
|
|
|
|
size = (uintptr_t)lnkr_ondemand_text_size;
|
|
flags = K_MEM_MAP_UNPAGED | K_MEM_PERM_EXEC | K_MEM_CACHE_WB;
|
|
VIRT_FOREACH(lnkr_ondemand_text_start, size, addr) {
|
|
k_mem_paging_backing_store_location_query(addr, &location);
|
|
arch_mem_map(addr, location, CONFIG_MMU_PAGE_SIZE, flags);
|
|
sys_bitarray_set_region(&virt_region_bitmap, 1,
|
|
virt_to_bitmap_offset(addr, CONFIG_MMU_PAGE_SIZE));
|
|
}
|
|
|
|
size = (uintptr_t)lnkr_ondemand_rodata_size;
|
|
flags = K_MEM_MAP_UNPAGED | K_MEM_CACHE_WB;
|
|
VIRT_FOREACH(lnkr_ondemand_rodata_start, size, addr) {
|
|
k_mem_paging_backing_store_location_query(addr, &location);
|
|
arch_mem_map(addr, location, CONFIG_MMU_PAGE_SIZE, flags);
|
|
sys_bitarray_set_region(&virt_region_bitmap, 1,
|
|
virt_to_bitmap_offset(addr, CONFIG_MMU_PAGE_SIZE));
|
|
}
|
|
}
|
|
#endif /* CONFIG_LINKER_USE_ONDEMAND_SECTION */
|
|
|
|
void z_mem_manage_init(void)
|
|
{
|
|
uintptr_t phys;
|
|
uint8_t *addr;
|
|
struct k_mem_page_frame *pf;
|
|
k_spinlock_key_t key = k_spin_lock(&z_mm_lock);
|
|
|
|
free_page_frame_list_init();
|
|
|
|
ARG_UNUSED(addr);
|
|
|
|
#ifdef CONFIG_ARCH_HAS_RESERVED_PAGE_FRAMES
|
|
/* If some page frames are unavailable for use as memory, arch
|
|
* code will mark K_MEM_PAGE_FRAME_RESERVED in their flags
|
|
*/
|
|
arch_reserved_pages_update();
|
|
#endif /* CONFIG_ARCH_HAS_RESERVED_PAGE_FRAMES */
|
|
|
|
#ifdef CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT
|
|
/* All pages composing the Zephyr image are mapped at boot in a
|
|
* predictable way. This can change at runtime.
|
|
*/
|
|
VIRT_FOREACH(K_MEM_KERNEL_VIRT_START, K_MEM_KERNEL_VIRT_SIZE, addr)
|
|
{
|
|
pf = k_mem_phys_to_page_frame(K_MEM_BOOT_VIRT_TO_PHYS(addr));
|
|
frame_mapped_set(pf, addr);
|
|
|
|
/* TODO: for now we pin the whole Zephyr image. Demand paging
|
|
* currently tested with anonymously-mapped pages which are not
|
|
* pinned.
|
|
*
|
|
* We will need to setup linker regions for a subset of kernel
|
|
* code/data pages which are pinned in memory and
|
|
* may not be evicted. This will contain critical CPU data
|
|
* structures, and any code used to perform page fault
|
|
* handling, page-ins, etc.
|
|
*/
|
|
k_mem_page_frame_set(pf, K_MEM_PAGE_FRAME_PINNED);
|
|
}
|
|
#endif /* CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT */
|
|
|
|
#ifdef CONFIG_LINKER_USE_BOOT_SECTION
|
|
/* Pin the boot section to prevent it from being swapped out during
|
|
* boot process. Will be un-pinned once boot process completes.
|
|
*/
|
|
mark_linker_section_pinned(lnkr_boot_start, lnkr_boot_end, true);
|
|
#endif /* CONFIG_LINKER_USE_BOOT_SECTION */
|
|
|
|
#ifdef CONFIG_LINKER_USE_PINNED_SECTION
|
|
/* Pin the page frames correspondng to the pinned symbols */
|
|
mark_linker_section_pinned(lnkr_pinned_start, lnkr_pinned_end, true);
|
|
#endif /* CONFIG_LINKER_USE_PINNED_SECTION */
|
|
|
|
/* Any remaining pages that aren't mapped, reserved, or pinned get
|
|
* added to the free pages list
|
|
*/
|
|
K_MEM_PAGE_FRAME_FOREACH(phys, pf) {
|
|
if (k_mem_page_frame_is_available(pf)) {
|
|
free_page_frame_list_put(pf);
|
|
}
|
|
}
|
|
LOG_DBG("free page frames: %zu", z_free_page_count);
|
|
|
|
#ifdef CONFIG_DEMAND_PAGING
|
|
#ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
|
|
z_paging_histogram_init();
|
|
#endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */
|
|
k_mem_paging_backing_store_init();
|
|
k_mem_paging_eviction_init();
|
|
/* start tracking evictable page installed above if any */
|
|
K_MEM_PAGE_FRAME_FOREACH(phys, pf) {
|
|
if (k_mem_page_frame_is_evictable(pf)) {
|
|
k_mem_paging_eviction_add(pf);
|
|
}
|
|
}
|
|
#endif /* CONFIG_DEMAND_PAGING */
|
|
|
|
#ifdef CONFIG_LINKER_USE_ONDEMAND_SECTION
|
|
z_paging_ondemand_section_map();
|
|
#endif
|
|
|
|
#if __ASSERT_ON
|
|
page_frames_initialized = true;
|
|
#endif
|
|
k_spin_unlock(&z_mm_lock, key);
|
|
|
|
#ifndef CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT
|
|
/* If BSS section is not present in memory at boot,
|
|
* it would not have been cleared. This needs to be
|
|
* done now since paging mechanism has been initialized
|
|
* and the BSS pages can be brought into physical
|
|
* memory to be cleared.
|
|
*/
|
|
z_bss_zero();
|
|
#endif /* CONFIG_LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT */
|
|
}
|
|
|
|
void z_mem_manage_boot_finish(void)
|
|
{
|
|
#ifdef CONFIG_LINKER_USE_BOOT_SECTION
|
|
/* At the end of boot process, unpin the boot sections
|
|
* as they don't need to be in memory all the time anymore.
|
|
*/
|
|
mark_linker_section_pinned(lnkr_boot_start, lnkr_boot_end, false);
|
|
#endif /* CONFIG_LINKER_USE_BOOT_SECTION */
|
|
}
|
|
|
|
#ifdef CONFIG_DEMAND_PAGING
|
|
|
|
#ifdef CONFIG_DEMAND_PAGING_STATS
|
|
struct k_mem_paging_stats_t paging_stats;
|
|
extern struct k_mem_paging_histogram_t z_paging_histogram_eviction;
|
|
extern struct k_mem_paging_histogram_t z_paging_histogram_backing_store_page_in;
|
|
extern struct k_mem_paging_histogram_t z_paging_histogram_backing_store_page_out;
|
|
#endif /* CONFIG_DEMAND_PAGING_STATS */
|
|
|
|
static inline void do_backing_store_page_in(uintptr_t location)
|
|
{
|
|
#ifdef CONFIG_DEMAND_MAPPING
|
|
/* Check for special cases */
|
|
switch (location) {
|
|
case ARCH_UNPAGED_ANON_ZERO:
|
|
memset(K_MEM_SCRATCH_PAGE, 0, CONFIG_MMU_PAGE_SIZE);
|
|
__fallthrough;
|
|
case ARCH_UNPAGED_ANON_UNINIT:
|
|
/* nothing else to do */
|
|
return;
|
|
default:
|
|
break;
|
|
}
|
|
#endif /* CONFIG_DEMAND_MAPPING */
|
|
|
|
#ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
|
|
uint32_t time_diff;
|
|
|
|
#ifdef CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS
|
|
timing_t time_start, time_end;
|
|
|
|
time_start = timing_counter_get();
|
|
#else
|
|
uint32_t time_start;
|
|
|
|
time_start = k_cycle_get_32();
|
|
#endif /* CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS */
|
|
#endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */
|
|
|
|
k_mem_paging_backing_store_page_in(location);
|
|
|
|
#ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
|
|
#ifdef CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS
|
|
time_end = timing_counter_get();
|
|
time_diff = (uint32_t)timing_cycles_get(&time_start, &time_end);
|
|
#else
|
|
time_diff = k_cycle_get_32() - time_start;
|
|
#endif /* CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS */
|
|
|
|
z_paging_histogram_inc(&z_paging_histogram_backing_store_page_in,
|
|
time_diff);
|
|
#endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */
|
|
}
|
|
|
|
static inline void do_backing_store_page_out(uintptr_t location)
|
|
{
|
|
#ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
|
|
uint32_t time_diff;
|
|
|
|
#ifdef CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS
|
|
timing_t time_start, time_end;
|
|
|
|
time_start = timing_counter_get();
|
|
#else
|
|
uint32_t time_start;
|
|
|
|
time_start = k_cycle_get_32();
|
|
#endif /* CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS */
|
|
#endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */
|
|
|
|
k_mem_paging_backing_store_page_out(location);
|
|
|
|
#ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
|
|
#ifdef CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS
|
|
time_end = timing_counter_get();
|
|
time_diff = (uint32_t)timing_cycles_get(&time_start, &time_end);
|
|
#else
|
|
time_diff = k_cycle_get_32() - time_start;
|
|
#endif /* CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS */
|
|
|
|
z_paging_histogram_inc(&z_paging_histogram_backing_store_page_out,
|
|
time_diff);
|
|
#endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */
|
|
}
|
|
|
|
#if defined(CONFIG_SMP) && defined(CONFIG_DEMAND_PAGING_ALLOW_IRQ)
|
|
/*
|
|
* SMP support is very simple. Some resources such as the scratch page could
|
|
* be made per CPU, backing store driver execution be confined to the faulting
|
|
* CPU, statistics be made to cope with access concurrency, etc. But in the
|
|
* end we're dealing with memory transfer to/from some external storage which
|
|
* is inherently slow and whose access is most likely serialized anyway.
|
|
* So let's simply enforce global demand paging serialization across all CPUs
|
|
* with a mutex as there is no real gain from added parallelism here.
|
|
*/
|
|
static K_MUTEX_DEFINE(z_mm_paging_lock);
|
|
#endif
|
|
|
|
static void virt_region_foreach(void *addr, size_t size,
|
|
void (*func)(void *))
|
|
{
|
|
k_mem_assert_virtual_region(addr, size);
|
|
|
|
for (size_t offset = 0; offset < size; offset += CONFIG_MMU_PAGE_SIZE) {
|
|
func((uint8_t *)addr + offset);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Perform some preparatory steps before paging out. The provided page frame
|
|
* must be evicted to the backing store immediately after this is called
|
|
* with a call to k_mem_paging_backing_store_page_out() if it contains
|
|
* a data page.
|
|
*
|
|
* - Map page frame to scratch area if requested. This always is true if we're
|
|
* doing a page fault, but is only set on manual evictions if the page is
|
|
* dirty.
|
|
* - If mapped:
|
|
* - obtain backing store location and populate location parameter
|
|
* - Update page tables with location
|
|
* - Mark page frame as busy
|
|
*
|
|
* Returns -ENOMEM if the backing store is full
|
|
*/
|
|
static int page_frame_prepare_locked(struct k_mem_page_frame *pf, bool *dirty_ptr,
|
|
bool page_fault, uintptr_t *location_ptr)
|
|
{
|
|
uintptr_t phys;
|
|
int ret;
|
|
bool dirty = *dirty_ptr;
|
|
|
|
phys = k_mem_page_frame_to_phys(pf);
|
|
__ASSERT(!k_mem_page_frame_is_pinned(pf), "page frame 0x%lx is pinned",
|
|
phys);
|
|
|
|
/* If the backing store doesn't have a copy of the page, even if it
|
|
* wasn't modified, treat as dirty. This can happen for a few
|
|
* reasons:
|
|
* 1) Page has never been swapped out before, and the backing store
|
|
* wasn't pre-populated with this data page.
|
|
* 2) Page was swapped out before, but the page contents were not
|
|
* preserved after swapping back in.
|
|
* 3) Page contents were preserved when swapped back in, but were later
|
|
* evicted from the backing store to make room for other evicted
|
|
* pages.
|
|
*/
|
|
if (k_mem_page_frame_is_mapped(pf)) {
|
|
dirty = dirty || !k_mem_page_frame_is_backed(pf);
|
|
}
|
|
|
|
if (dirty || page_fault) {
|
|
arch_mem_scratch(phys);
|
|
}
|
|
|
|
if (k_mem_page_frame_is_mapped(pf)) {
|
|
ret = k_mem_paging_backing_store_location_get(pf, location_ptr,
|
|
page_fault);
|
|
if (ret != 0) {
|
|
LOG_ERR("out of backing store memory");
|
|
return -ENOMEM;
|
|
}
|
|
arch_mem_page_out(k_mem_page_frame_to_virt(pf), *location_ptr);
|
|
k_mem_paging_eviction_remove(pf);
|
|
} else {
|
|
/* Shouldn't happen unless this function is mis-used */
|
|
__ASSERT(!dirty, "un-mapped page determined to be dirty");
|
|
}
|
|
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
|
|
/* Mark as busy so that k_mem_page_frame_is_evictable() returns false */
|
|
__ASSERT(!k_mem_page_frame_is_busy(pf), "page frame 0x%lx is already busy",
|
|
phys);
|
|
k_mem_page_frame_set(pf, K_MEM_PAGE_FRAME_BUSY);
|
|
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
|
|
/* Update dirty parameter, since we set to true if it wasn't backed
|
|
* even if otherwise clean
|
|
*/
|
|
*dirty_ptr = dirty;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int do_mem_evict(void *addr)
|
|
{
|
|
bool dirty;
|
|
struct k_mem_page_frame *pf;
|
|
uintptr_t location;
|
|
k_spinlock_key_t key;
|
|
uintptr_t flags, phys;
|
|
int ret;
|
|
|
|
#if CONFIG_DEMAND_PAGING_ALLOW_IRQ
|
|
__ASSERT(!k_is_in_isr(),
|
|
"%s is unavailable in ISRs with CONFIG_DEMAND_PAGING_ALLOW_IRQ",
|
|
__func__);
|
|
#ifdef CONFIG_SMP
|
|
k_mutex_lock(&z_mm_paging_lock, K_FOREVER);
|
|
#else
|
|
k_sched_lock();
|
|
#endif
|
|
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
|
|
key = k_spin_lock(&z_mm_lock);
|
|
flags = arch_page_info_get(addr, &phys, false);
|
|
__ASSERT((flags & ARCH_DATA_PAGE_NOT_MAPPED) == 0,
|
|
"address %p isn't mapped", addr);
|
|
if ((flags & ARCH_DATA_PAGE_LOADED) == 0) {
|
|
/* Un-mapped or already evicted. Nothing to do */
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
dirty = (flags & ARCH_DATA_PAGE_DIRTY) != 0;
|
|
pf = k_mem_phys_to_page_frame(phys);
|
|
__ASSERT(k_mem_page_frame_to_virt(pf) == addr, "page frame address mismatch");
|
|
ret = page_frame_prepare_locked(pf, &dirty, false, &location);
|
|
if (ret != 0) {
|
|
goto out;
|
|
}
|
|
|
|
__ASSERT(ret == 0, "failed to prepare page frame");
|
|
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
|
|
k_spin_unlock(&z_mm_lock, key);
|
|
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
|
|
if (dirty) {
|
|
do_backing_store_page_out(location);
|
|
}
|
|
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
|
|
key = k_spin_lock(&z_mm_lock);
|
|
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
|
|
page_frame_free_locked(pf);
|
|
out:
|
|
k_spin_unlock(&z_mm_lock, key);
|
|
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
|
|
#ifdef CONFIG_SMP
|
|
k_mutex_unlock(&z_mm_paging_lock);
|
|
#else
|
|
k_sched_unlock();
|
|
#endif
|
|
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
|
|
return ret;
|
|
}
|
|
|
|
int k_mem_page_out(void *addr, size_t size)
|
|
{
|
|
__ASSERT(page_frames_initialized, "%s called on %p too early", __func__,
|
|
addr);
|
|
k_mem_assert_virtual_region(addr, size);
|
|
|
|
for (size_t offset = 0; offset < size; offset += CONFIG_MMU_PAGE_SIZE) {
|
|
void *pos = (uint8_t *)addr + offset;
|
|
int ret;
|
|
|
|
ret = do_mem_evict(pos);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int k_mem_page_frame_evict(uintptr_t phys)
|
|
{
|
|
k_spinlock_key_t key;
|
|
struct k_mem_page_frame *pf;
|
|
bool dirty;
|
|
uintptr_t flags;
|
|
uintptr_t location;
|
|
int ret;
|
|
|
|
__ASSERT(page_frames_initialized, "%s called on 0x%lx too early",
|
|
__func__, phys);
|
|
|
|
/* Implementation is similar to do_page_fault() except there is no
|
|
* data page to page-in, see comments in that function.
|
|
*/
|
|
|
|
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
|
|
__ASSERT(!k_is_in_isr(),
|
|
"%s is unavailable in ISRs with CONFIG_DEMAND_PAGING_ALLOW_IRQ",
|
|
__func__);
|
|
#ifdef CONFIG_SMP
|
|
k_mutex_lock(&z_mm_paging_lock, K_FOREVER);
|
|
#else
|
|
k_sched_lock();
|
|
#endif
|
|
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
|
|
key = k_spin_lock(&z_mm_lock);
|
|
pf = k_mem_phys_to_page_frame(phys);
|
|
if (!k_mem_page_frame_is_mapped(pf)) {
|
|
/* Nothing to do, free page */
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
flags = arch_page_info_get(k_mem_page_frame_to_virt(pf), NULL, false);
|
|
/* Shouldn't ever happen */
|
|
__ASSERT((flags & ARCH_DATA_PAGE_LOADED) != 0, "data page not loaded");
|
|
dirty = (flags & ARCH_DATA_PAGE_DIRTY) != 0;
|
|
ret = page_frame_prepare_locked(pf, &dirty, false, &location);
|
|
if (ret != 0) {
|
|
goto out;
|
|
}
|
|
|
|
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
|
|
k_spin_unlock(&z_mm_lock, key);
|
|
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
|
|
if (dirty) {
|
|
do_backing_store_page_out(location);
|
|
}
|
|
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
|
|
k_spin_unlock(&z_mm_lock, key);
|
|
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
|
|
page_frame_free_locked(pf);
|
|
out:
|
|
k_spin_unlock(&z_mm_lock, key);
|
|
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
|
|
#ifdef CONFIG_SMP
|
|
k_mutex_unlock(&z_mm_paging_lock);
|
|
#else
|
|
k_sched_unlock();
|
|
#endif
|
|
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
|
|
return ret;
|
|
}
|
|
|
|
static inline void paging_stats_faults_inc(struct k_thread *faulting_thread,
|
|
int key)
|
|
{
|
|
#ifdef CONFIG_DEMAND_PAGING_STATS
|
|
bool is_irq_unlocked = arch_irq_unlocked(key);
|
|
|
|
paging_stats.pagefaults.cnt++;
|
|
|
|
if (is_irq_unlocked) {
|
|
paging_stats.pagefaults.irq_unlocked++;
|
|
} else {
|
|
paging_stats.pagefaults.irq_locked++;
|
|
}
|
|
|
|
#ifdef CONFIG_DEMAND_PAGING_THREAD_STATS
|
|
faulting_thread->paging_stats.pagefaults.cnt++;
|
|
|
|
if (is_irq_unlocked) {
|
|
faulting_thread->paging_stats.pagefaults.irq_unlocked++;
|
|
} else {
|
|
faulting_thread->paging_stats.pagefaults.irq_locked++;
|
|
}
|
|
#else
|
|
ARG_UNUSED(faulting_thread);
|
|
#endif /* CONFIG_DEMAND_PAGING_THREAD_STATS */
|
|
|
|
#ifndef CONFIG_DEMAND_PAGING_ALLOW_IRQ
|
|
if (k_is_in_isr()) {
|
|
paging_stats.pagefaults.in_isr++;
|
|
|
|
#ifdef CONFIG_DEMAND_PAGING_THREAD_STATS
|
|
faulting_thread->paging_stats.pagefaults.in_isr++;
|
|
#endif /* CONFIG_DEMAND_PAGING_THREAD_STATS */
|
|
}
|
|
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
|
|
#endif /* CONFIG_DEMAND_PAGING_STATS */
|
|
}
|
|
|
|
static inline void paging_stats_eviction_inc(struct k_thread *faulting_thread,
|
|
bool dirty)
|
|
{
|
|
#ifdef CONFIG_DEMAND_PAGING_STATS
|
|
if (dirty) {
|
|
paging_stats.eviction.dirty++;
|
|
} else {
|
|
paging_stats.eviction.clean++;
|
|
}
|
|
#ifdef CONFIG_DEMAND_PAGING_THREAD_STATS
|
|
if (dirty) {
|
|
faulting_thread->paging_stats.eviction.dirty++;
|
|
} else {
|
|
faulting_thread->paging_stats.eviction.clean++;
|
|
}
|
|
#else
|
|
ARG_UNUSED(faulting_thread);
|
|
#endif /* CONFIG_DEMAND_PAGING_THREAD_STATS */
|
|
#endif /* CONFIG_DEMAND_PAGING_STATS */
|
|
}
|
|
|
|
static inline struct k_mem_page_frame *do_eviction_select(bool *dirty)
|
|
{
|
|
struct k_mem_page_frame *pf;
|
|
|
|
#ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
|
|
uint32_t time_diff;
|
|
|
|
#ifdef CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS
|
|
timing_t time_start, time_end;
|
|
|
|
time_start = timing_counter_get();
|
|
#else
|
|
uint32_t time_start;
|
|
|
|
time_start = k_cycle_get_32();
|
|
#endif /* CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS */
|
|
#endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */
|
|
|
|
pf = k_mem_paging_eviction_select(dirty);
|
|
|
|
#ifdef CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM
|
|
#ifdef CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS
|
|
time_end = timing_counter_get();
|
|
time_diff = (uint32_t)timing_cycles_get(&time_start, &time_end);
|
|
#else
|
|
time_diff = k_cycle_get_32() - time_start;
|
|
#endif /* CONFIG_DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS */
|
|
|
|
z_paging_histogram_inc(&z_paging_histogram_eviction, time_diff);
|
|
#endif /* CONFIG_DEMAND_PAGING_TIMING_HISTOGRAM */
|
|
|
|
return pf;
|
|
}
|
|
|
|
static bool do_page_fault(void *addr, bool pin)
|
|
{
|
|
struct k_mem_page_frame *pf;
|
|
k_spinlock_key_t key;
|
|
uintptr_t page_in_location, page_out_location;
|
|
enum arch_page_location status;
|
|
bool result;
|
|
bool dirty = false;
|
|
struct k_thread *faulting_thread;
|
|
int ret;
|
|
|
|
__ASSERT(page_frames_initialized, "page fault at %p happened too early",
|
|
addr);
|
|
|
|
LOG_DBG("page fault at %p", addr);
|
|
|
|
/*
|
|
* TODO: Add performance accounting:
|
|
* - k_mem_paging_eviction_select() metrics
|
|
* * periodic timer execution time histogram (if implemented)
|
|
*/
|
|
|
|
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
|
|
/*
|
|
* We do re-enable interrupts during the page-in/page-out operation
|
|
* if and only if interrupts were enabled when the exception was
|
|
* taken; in this configuration page faults in an ISR are a bug; all
|
|
* their code/data must be pinned.
|
|
*
|
|
* If interrupts were disabled when the exception was taken, the
|
|
* arch code is responsible for keeping them that way when entering
|
|
* this function.
|
|
*
|
|
* If this is not enabled, then interrupts are always locked for the
|
|
* entire operation. This is far worse for system interrupt latency
|
|
* but requires less pinned pages and ISRs may also take page faults.
|
|
*
|
|
* On UP we lock the scheduler so that other threads are never
|
|
* scheduled during the page-in/out operation. Support for
|
|
* allowing k_mem_paging_backing_store_page_out() and
|
|
* k_mem_paging_backing_store_page_in() to also sleep and allow
|
|
* other threads to run (such as in the case where the transfer is
|
|
* async DMA) is not supported on UP. Even if limited to thread
|
|
* context, arbitrary memory access triggering exceptions that put
|
|
* a thread to sleep on a contended page fault operation will break
|
|
* scheduling assumptions of cooperative threads or threads that
|
|
* implement critical sections with spinlocks or disabling IRQs.
|
|
*
|
|
* On SMP, though, exclusivity cannot be assumed solely from being
|
|
* a cooperative thread. Another thread with any prio may be running
|
|
* on another CPU so exclusion must already be enforced by other
|
|
* means. Therefore trying to prevent scheduling on SMP is pointless,
|
|
* and k_sched_lock() is equivalent to a no-op on SMP anyway.
|
|
* As a result, sleeping/rescheduling in the SMP case is fine.
|
|
*/
|
|
__ASSERT(!k_is_in_isr(), "ISR page faults are forbidden");
|
|
#ifdef CONFIG_SMP
|
|
k_mutex_lock(&z_mm_paging_lock, K_FOREVER);
|
|
#else
|
|
k_sched_lock();
|
|
#endif
|
|
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
|
|
|
|
key = k_spin_lock(&z_mm_lock);
|
|
faulting_thread = _current_cpu->current;
|
|
|
|
status = arch_page_location_get(addr, &page_in_location);
|
|
if (status == ARCH_PAGE_LOCATION_BAD) {
|
|
/* Return false to treat as a fatal error */
|
|
result = false;
|
|
goto out;
|
|
}
|
|
result = true;
|
|
|
|
if (status == ARCH_PAGE_LOCATION_PAGED_IN) {
|
|
if (pin) {
|
|
/* It's a physical memory address */
|
|
uintptr_t phys = page_in_location;
|
|
|
|
pf = k_mem_phys_to_page_frame(phys);
|
|
if (!k_mem_page_frame_is_pinned(pf)) {
|
|
k_mem_paging_eviction_remove(pf);
|
|
k_mem_page_frame_set(pf, K_MEM_PAGE_FRAME_PINNED);
|
|
}
|
|
}
|
|
|
|
/* This if-block is to pin the page if it is
|
|
* already present in physical memory. There is
|
|
* no need to go through the following code to
|
|
* pull in the data pages. So skip to the end.
|
|
*/
|
|
goto out;
|
|
}
|
|
__ASSERT(status == ARCH_PAGE_LOCATION_PAGED_OUT,
|
|
"unexpected status value %d", status);
|
|
|
|
paging_stats_faults_inc(faulting_thread, key.key);
|
|
|
|
pf = free_page_frame_list_get();
|
|
if (pf == NULL) {
|
|
/* Need to evict a page frame */
|
|
pf = do_eviction_select(&dirty);
|
|
__ASSERT(pf != NULL, "failed to get a page frame");
|
|
LOG_DBG("evicting %p at 0x%lx",
|
|
k_mem_page_frame_to_virt(pf),
|
|
k_mem_page_frame_to_phys(pf));
|
|
|
|
paging_stats_eviction_inc(faulting_thread, dirty);
|
|
}
|
|
ret = page_frame_prepare_locked(pf, &dirty, true, &page_out_location);
|
|
__ASSERT(ret == 0, "failed to prepare page frame");
|
|
|
|
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
|
|
k_spin_unlock(&z_mm_lock, key);
|
|
/* Interrupts are now unlocked if they were not locked when we entered
|
|
* this function, and we may service ISRs. The scheduler is still
|
|
* locked.
|
|
*/
|
|
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
|
|
if (dirty) {
|
|
do_backing_store_page_out(page_out_location);
|
|
}
|
|
do_backing_store_page_in(page_in_location);
|
|
|
|
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
|
|
key = k_spin_lock(&z_mm_lock);
|
|
k_mem_page_frame_clear(pf, K_MEM_PAGE_FRAME_BUSY);
|
|
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
|
|
k_mem_page_frame_clear(pf, K_MEM_PAGE_FRAME_MAPPED);
|
|
frame_mapped_set(pf, addr);
|
|
if (pin) {
|
|
k_mem_page_frame_set(pf, K_MEM_PAGE_FRAME_PINNED);
|
|
}
|
|
|
|
arch_mem_page_in(addr, k_mem_page_frame_to_phys(pf));
|
|
k_mem_paging_backing_store_page_finalize(pf, page_in_location);
|
|
if (!pin) {
|
|
k_mem_paging_eviction_add(pf);
|
|
}
|
|
out:
|
|
k_spin_unlock(&z_mm_lock, key);
|
|
#ifdef CONFIG_DEMAND_PAGING_ALLOW_IRQ
|
|
#ifdef CONFIG_SMP
|
|
k_mutex_unlock(&z_mm_paging_lock);
|
|
#else
|
|
k_sched_unlock();
|
|
#endif
|
|
#endif /* CONFIG_DEMAND_PAGING_ALLOW_IRQ */
|
|
|
|
return result;
|
|
}
|
|
|
|
static void do_page_in(void *addr)
|
|
{
|
|
bool ret;
|
|
|
|
ret = do_page_fault(addr, false);
|
|
__ASSERT(ret, "unmapped memory address %p", addr);
|
|
(void)ret;
|
|
}
|
|
|
|
void k_mem_page_in(void *addr, size_t size)
|
|
{
|
|
__ASSERT(!IS_ENABLED(CONFIG_DEMAND_PAGING_ALLOW_IRQ) || !k_is_in_isr(),
|
|
"%s may not be called in ISRs if CONFIG_DEMAND_PAGING_ALLOW_IRQ is enabled",
|
|
__func__);
|
|
virt_region_foreach(addr, size, do_page_in);
|
|
}
|
|
|
|
static void do_mem_pin(void *addr)
|
|
{
|
|
bool ret;
|
|
|
|
ret = do_page_fault(addr, true);
|
|
__ASSERT(ret, "unmapped memory address %p", addr);
|
|
(void)ret;
|
|
}
|
|
|
|
void k_mem_pin(void *addr, size_t size)
|
|
{
|
|
__ASSERT(!IS_ENABLED(CONFIG_DEMAND_PAGING_ALLOW_IRQ) || !k_is_in_isr(),
|
|
"%s may not be called in ISRs if CONFIG_DEMAND_PAGING_ALLOW_IRQ is enabled",
|
|
__func__);
|
|
virt_region_foreach(addr, size, do_mem_pin);
|
|
}
|
|
|
|
bool k_mem_page_fault(void *addr)
|
|
{
|
|
return do_page_fault(addr, false);
|
|
}
|
|
|
|
static void do_mem_unpin(void *addr)
|
|
{
|
|
struct k_mem_page_frame *pf;
|
|
k_spinlock_key_t key;
|
|
uintptr_t flags, phys;
|
|
|
|
key = k_spin_lock(&z_mm_lock);
|
|
flags = arch_page_info_get(addr, &phys, false);
|
|
__ASSERT((flags & ARCH_DATA_PAGE_NOT_MAPPED) == 0,
|
|
"invalid data page at %p", addr);
|
|
if ((flags & ARCH_DATA_PAGE_LOADED) != 0) {
|
|
pf = k_mem_phys_to_page_frame(phys);
|
|
if (k_mem_page_frame_is_pinned(pf)) {
|
|
k_mem_page_frame_clear(pf, K_MEM_PAGE_FRAME_PINNED);
|
|
k_mem_paging_eviction_add(pf);
|
|
}
|
|
}
|
|
k_spin_unlock(&z_mm_lock, key);
|
|
}
|
|
|
|
void k_mem_unpin(void *addr, size_t size)
|
|
{
|
|
__ASSERT(page_frames_initialized, "%s called on %p too early", __func__,
|
|
addr);
|
|
virt_region_foreach(addr, size, do_mem_unpin);
|
|
}
|
|
|
|
#endif /* CONFIG_DEMAND_PAGING */
|