zephyr/arch/xtensa/core/vector_handlers.c

390 lines
10 KiB
C

/*
* Copyright (c) 2017, Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <string.h>
#include <xtensa_asm2_context.h>
#include <zephyr/kernel.h>
#include <ksched.h>
#include <zephyr/kernel_structs.h>
#include <kernel_internal.h>
#include <kswap.h>
#include <_soc_inthandlers.h>
#include <zephyr/toolchain.h>
#include <zephyr/logging/log.h>
#include <offsets.h>
#include <zsr.h>
#include <zephyr/arch/common/exc_handle.h>
#include <xtensa_internal.h>
LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
extern char xtensa_arch_except_epc[];
extern char xtensa_arch_kernel_oops_epc[];
#ifdef CONFIG_USERSPACE
Z_EXC_DECLARE(xtensa_user_string_nlen);
static const struct z_exc_handle exceptions[] = {
Z_EXC_HANDLE(xtensa_user_string_nlen)
};
#endif /* CONFIG_USERSPACE */
void xtensa_dump_stack(const z_arch_esf_t *stack)
{
_xtensa_irq_stack_frame_raw_t *frame = (void *)stack;
_xtensa_irq_bsa_t *bsa = frame->ptr_to_bsa;
uintptr_t num_high_regs;
int reg_blks_remaining;
/* Calculate number of high registers. */
num_high_regs = (uint8_t *)bsa - (uint8_t *)frame + sizeof(void *);
num_high_regs /= sizeof(uintptr_t);
/* And high registers are always comes in 4 in a block. */
reg_blks_remaining = (int)num_high_regs / 4;
LOG_ERR(" ** A0 %p SP %p A2 %p A3 %p",
(void *)bsa->a0,
(void *)((char *)bsa + sizeof(*bsa)),
(void *)bsa->a2, (void *)bsa->a3);
if (reg_blks_remaining > 0) {
reg_blks_remaining--;
LOG_ERR(" ** A4 %p A5 %p A6 %p A7 %p",
(void *)frame->blks[reg_blks_remaining].r0,
(void *)frame->blks[reg_blks_remaining].r1,
(void *)frame->blks[reg_blks_remaining].r2,
(void *)frame->blks[reg_blks_remaining].r3);
}
if (reg_blks_remaining > 0) {
reg_blks_remaining--;
LOG_ERR(" ** A8 %p A9 %p A10 %p A11 %p",
(void *)frame->blks[reg_blks_remaining].r0,
(void *)frame->blks[reg_blks_remaining].r1,
(void *)frame->blks[reg_blks_remaining].r2,
(void *)frame->blks[reg_blks_remaining].r3);
}
if (reg_blks_remaining > 0) {
reg_blks_remaining--;
LOG_ERR(" ** A12 %p A13 %p A14 %p A15 %p",
(void *)frame->blks[reg_blks_remaining].r0,
(void *)frame->blks[reg_blks_remaining].r1,
(void *)frame->blks[reg_blks_remaining].r2,
(void *)frame->blks[reg_blks_remaining].r3);
}
#if XCHAL_HAVE_LOOPS
LOG_ERR(" ** LBEG %p LEND %p LCOUNT %p",
(void *)bsa->lbeg,
(void *)bsa->lend,
(void *)bsa->lcount);
#endif
LOG_ERR(" ** SAR %p", (void *)bsa->sar);
#if XCHAL_HAVE_THREADPTR
LOG_ERR(" ** THREADPTR %p", (void *)bsa->threadptr);
#endif
}
static inline unsigned int get_bits(int offset, int num_bits, unsigned int val)
{
int mask;
mask = BIT(num_bits) - 1;
val = val >> offset;
return val & mask;
}
static void print_fatal_exception(void *print_stack, int cause,
bool is_dblexc, uint32_t depc)
{
void *pc;
uint32_t ps, vaddr;
_xtensa_irq_bsa_t *bsa = (void *)*(int **)print_stack;
ps = bsa->ps;
pc = (void *)bsa->pc;
__asm__ volatile("rsr.excvaddr %0" : "=r"(vaddr));
LOG_ERR(" ** FATAL EXCEPTION%s", (is_dblexc ? " (DOUBLE)" : ""));
LOG_ERR(" ** CPU %d EXCCAUSE %d (%s)",
arch_curr_cpu()->id, cause,
xtensa_exccause(cause));
LOG_ERR(" ** PC %p VADDR %p", pc, (void *)vaddr);
if (is_dblexc) {
LOG_ERR(" ** DEPC %p", (void *)depc);
}
LOG_ERR(" ** PS %p", (void *)bsa->ps);
LOG_ERR(" ** (INTLEVEL:%d EXCM: %d UM:%d RING:%d WOE:%d OWB:%d CALLINC:%d)",
get_bits(0, 4, ps), get_bits(4, 1, ps),
get_bits(5, 1, ps), get_bits(6, 2, ps),
get_bits(18, 1, ps),
get_bits(8, 4, ps), get_bits(16, 2, ps));
}
static ALWAYS_INLINE void usage_stop(void)
{
#ifdef CONFIG_SCHED_THREAD_USAGE
z_sched_usage_stop();
#endif
}
static inline void *return_to(void *interrupted)
{
#ifdef CONFIG_MULTITHREADING
return _current_cpu->nested <= 1 ?
z_get_next_switch_handle(interrupted) : interrupted;
#else
return interrupted;
#endif /* CONFIG_MULTITHREADING */
}
/* The wrapper code lives here instead of in the python script that
* generates _xtensa_handle_one_int*(). Seems cleaner, still kind of
* ugly.
*
* This may be unused depending on number of interrupt levels
* supported by the SoC.
*/
#define DEF_INT_C_HANDLER(l) \
__unused void *xtensa_int##l##_c(void *interrupted_stack) \
{ \
uint32_t irqs, intenable, m; \
usage_stop(); \
__asm__ volatile("rsr.interrupt %0" : "=r"(irqs)); \
__asm__ volatile("rsr.intenable %0" : "=r"(intenable)); \
irqs &= intenable; \
while ((m = _xtensa_handle_one_int##l(irqs))) { \
irqs ^= m; \
__asm__ volatile("wsr.intclear %0" : : "r"(m)); \
} \
return return_to(interrupted_stack); \
}
#if XCHAL_HAVE_NMI
#define MAX_INTR_LEVEL XCHAL_NMILEVEL
#elif XCHAL_HAVE_INTERRUPTS
#define MAX_INTR_LEVEL XCHAL_NUM_INTLEVELS
#else
#error Xtensa core with no interrupt support is used
#define MAX_INTR_LEVEL 0
#endif
#if MAX_INTR_LEVEL >= 2
DEF_INT_C_HANDLER(2)
#endif
#if MAX_INTR_LEVEL >= 3
DEF_INT_C_HANDLER(3)
#endif
#if MAX_INTR_LEVEL >= 4
DEF_INT_C_HANDLER(4)
#endif
#if MAX_INTR_LEVEL >= 5
DEF_INT_C_HANDLER(5)
#endif
#if MAX_INTR_LEVEL >= 6
DEF_INT_C_HANDLER(6)
#endif
#if MAX_INTR_LEVEL >= 7
DEF_INT_C_HANDLER(7)
#endif
static inline DEF_INT_C_HANDLER(1)
/* C handler for level 1 exceptions/interrupts. Hooked from the
* DEF_EXCINT 1 vector declaration in assembly code. This one looks
* different because exceptions and interrupts land at the same
* vector; other interrupt levels have their own vectors.
*/
void *xtensa_excint1_c(int *interrupted_stack)
{
int cause;
_xtensa_irq_bsa_t *bsa = (void *)*(int **)interrupted_stack;
bool is_fatal_error = false;
bool is_dblexc = false;
uint32_t ps;
void *pc, *print_stack = (void *)interrupted_stack;
uint32_t depc = 0;
__asm__ volatile("rsr.exccause %0" : "=r"(cause));
#ifdef CONFIG_XTENSA_MMU
__asm__ volatile("rsr.depc %0" : "=r"(depc));
is_dblexc = (depc != 0U);
#endif /* CONFIG_XTENSA_MMU */
switch (cause) {
case EXCCAUSE_LEVEL1_INTERRUPT:
if (!is_dblexc) {
return xtensa_int1_c(interrupted_stack);
}
break;
#ifndef CONFIG_USERSPACE
/* Syscalls are handled earlier in assembly if MMU is enabled.
* So we don't need this here.
*/
case EXCCAUSE_SYSCALL:
/* Just report it to the console for now */
LOG_ERR(" ** SYSCALL PS %p PC %p",
(void *)bsa->ps, (void *)bsa->pc);
xtensa_dump_stack(interrupted_stack);
/* Xtensa exceptions don't automatically advance PC,
* have to skip the SYSCALL instruction manually or
* else it will just loop forever
*/
bsa->pc += 3;
break;
#endif /* !CONFIG_USERSPACE */
default:
ps = bsa->ps;
pc = (void *)bsa->pc;
#ifdef CONFIG_USERSPACE
/* If the faulting address is from one of the known
* exceptions that should not be fatal, return to
* the fixup address.
*/
for (int i = 0; i < ARRAY_SIZE(exceptions); i++) {
if ((pc >= exceptions[i].start) &&
(pc < exceptions[i].end)) {
bsa->pc = (uintptr_t)exceptions[i].fixup;
goto fixup_out;
}
}
#endif /* CONFIG_USERSPACE */
/* Default for exception */
int reason = K_ERR_CPU_EXCEPTION;
is_fatal_error = true;
/* We need to distinguish between an ill in xtensa_arch_except,
* e.g for k_panic, and any other ill. For exceptions caused by
* xtensa_arch_except calls, we also need to pass the reason_p
* to xtensa_fatal_error. Since the ARCH_EXCEPT frame is in the
* BSA, the first arg reason_p is stored at the A2 offset.
* We assign EXCCAUSE the unused, reserved code 63; this may be
* problematic if the app or new boards also decide to repurpose
* this code.
*
* Another intentionally ill is from xtensa_arch_kernel_oops.
* Kernel OOPS has to be explicity raised so we can simply
* set the reason and continue.
*/
if (cause == EXCCAUSE_ILLEGAL) {
if (pc == (void *)&xtensa_arch_except_epc) {
cause = 63;
__asm__ volatile("wsr.exccause %0" : : "r"(cause));
reason = bsa->a2;
} else if (pc == (void *)&xtensa_arch_kernel_oops_epc) {
cause = 64; /* kernel oops */
reason = K_ERR_KERNEL_OOPS;
/* A3 contains the second argument to
* xtensa_arch_kernel_oops(reason, ssf)
* where ssf is the stack frame causing
* the kernel oops.
*/
print_stack = (void *)bsa->a3;
}
}
if (reason != K_ERR_KERNEL_OOPS) {
print_fatal_exception(print_stack, cause, is_dblexc, depc);
}
/* FIXME: legacy xtensa port reported "HW" exception
* for all unhandled exceptions, which seems incorrect
* as these are software errors. Should clean this
* up.
*/
xtensa_fatal_error(reason, (void *)print_stack);
break;
}
#ifdef CONFIG_XTENSA_MMU
switch (cause) {
case EXCCAUSE_LEVEL1_INTERRUPT:
#ifndef CONFIG_USERSPACE
case EXCCAUSE_SYSCALL:
#endif /* !CONFIG_USERSPACE */
is_fatal_error = false;
break;
default:
is_fatal_error = true;
break;
}
#endif /* CONFIG_XTENSA_MMU */
if (is_dblexc || is_fatal_error) {
uint32_t ignore;
/* We are going to manipulate _current_cpu->nested manually.
* Since the error is fatal, for recoverable errors, code
* execution must not return back to the current thread as
* it is being terminated (via above xtensa_fatal_error()).
* So we need to prevent more interrupts coming in which
* will affect the nested value as we are going outside of
* normal interrupt handling procedure.
*
* Setting nested to 1 has two effects:
* 1. Force return_to() to choose a new thread.
* Since the current thread is being terminated, it will
* not be chosen again.
* 2. When context switches to the newly chosen thread,
* nested must be zero for normal code execution,
* as that is not in interrupt context at all.
* After returning from this function, the rest of
* interrupt handling code will decrement nested,
* resulting it being zero before switching to another
* thread.
*/
__asm__ volatile("rsil %0, %1"
: "=r" (ignore) : "i"(XCHAL_NMILEVEL));
_current_cpu->nested = 1;
}
#if defined(CONFIG_XTENSA_MMU) || defined(CONFIG_XTENSA_MPU)
#ifdef CONFIG_USERSPACE
fixup_out:
#endif
if (is_dblexc) {
__asm__ volatile("wsr.depc %0" : : "r"(0));
}
#endif /* CONFIG_XTENSA_MMU || CONFIG_XTENSA_MPU */
return return_to(interrupted_stack);
}
#if defined(CONFIG_GDBSTUB)
void *xtensa_debugint_c(int *interrupted_stack)
{
extern void z_gdb_isr(z_arch_esf_t *esf);
z_gdb_isr((void *)interrupted_stack);
return return_to(interrupted_stack);
}
#endif