zephyr/drivers/spi/spi_nrfx_spi.c

405 lines
10 KiB
C

/*
* Copyright (c) 2017 - 2018, Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <drivers/spi.h>
#include <nrfx_spi.h>
#define LOG_DOMAIN "spi_nrfx_spi"
#define LOG_LEVEL CONFIG_SPI_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(spi_nrfx_spi);
#include "spi_context.h"
struct spi_nrfx_data {
struct spi_context ctx;
const struct device *dev;
size_t chunk_len;
bool busy;
#ifdef CONFIG_PM_DEVICE
uint32_t pm_state;
#endif
};
struct spi_nrfx_config {
nrfx_spi_t spi;
nrfx_spi_config_t config;
};
static inline struct spi_nrfx_data *get_dev_data(const struct device *dev)
{
return dev->data;
}
static inline const struct spi_nrfx_config *get_dev_config(const struct device *dev)
{
return dev->config;
}
static inline nrf_spi_frequency_t get_nrf_spi_frequency(uint32_t frequency)
{
/* Get the highest supported frequency not exceeding the requested one.
*/
if (frequency < 250000) {
return NRF_SPI_FREQ_125K;
} else if (frequency < 500000) {
return NRF_SPI_FREQ_250K;
} else if (frequency < 1000000) {
return NRF_SPI_FREQ_500K;
} else if (frequency < 2000000) {
return NRF_SPI_FREQ_1M;
} else if (frequency < 4000000) {
return NRF_SPI_FREQ_2M;
} else if (frequency < 8000000) {
return NRF_SPI_FREQ_4M;
} else {
return NRF_SPI_FREQ_8M;
}
}
static inline nrf_spi_mode_t get_nrf_spi_mode(uint16_t operation)
{
if (SPI_MODE_GET(operation) & SPI_MODE_CPOL) {
if (SPI_MODE_GET(operation) & SPI_MODE_CPHA) {
return NRF_SPI_MODE_3;
} else {
return NRF_SPI_MODE_2;
}
} else {
if (SPI_MODE_GET(operation) & SPI_MODE_CPHA) {
return NRF_SPI_MODE_1;
} else {
return NRF_SPI_MODE_0;
}
}
}
static inline nrf_spi_bit_order_t get_nrf_spi_bit_order(uint16_t operation)
{
if (operation & SPI_TRANSFER_LSB) {
return NRF_SPI_BIT_ORDER_LSB_FIRST;
} else {
return NRF_SPI_BIT_ORDER_MSB_FIRST;
}
}
static int configure(const struct device *dev,
const struct spi_config *spi_cfg)
{
struct spi_context *ctx = &get_dev_data(dev)->ctx;
const nrfx_spi_t *spi = &get_dev_config(dev)->spi;
if (spi_context_configured(ctx, spi_cfg)) {
/* Already configured. No need to do it again. */
return 0;
}
if (SPI_OP_MODE_GET(spi_cfg->operation) != SPI_OP_MODE_MASTER) {
LOG_ERR("Slave mode is not supported on %s",
dev->name);
return -EINVAL;
}
if (spi_cfg->operation & SPI_MODE_LOOP) {
LOG_ERR("Loopback mode is not supported");
return -EINVAL;
}
if ((spi_cfg->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) {
LOG_ERR("Only single line mode is supported");
return -EINVAL;
}
if (SPI_WORD_SIZE_GET(spi_cfg->operation) != 8) {
LOG_ERR("Word sizes other than 8 bits"
" are not supported");
return -EINVAL;
}
if (spi_cfg->frequency < 125000) {
LOG_ERR("Frequencies lower than 125 kHz are not supported");
return -EINVAL;
}
ctx->config = spi_cfg;
spi_context_cs_configure(ctx);
nrf_spi_configure(spi->p_reg,
get_nrf_spi_mode(spi_cfg->operation),
get_nrf_spi_bit_order(spi_cfg->operation));
nrf_spi_frequency_set(spi->p_reg,
get_nrf_spi_frequency(spi_cfg->frequency));
return 0;
}
static void transfer_next_chunk(const struct device *dev)
{
struct spi_nrfx_data *dev_data = get_dev_data(dev);
struct spi_context *ctx = &dev_data->ctx;
int error = 0;
size_t chunk_len = spi_context_max_continuous_chunk(ctx);
if (chunk_len > 0) {
nrfx_spi_xfer_desc_t xfer;
nrfx_err_t result;
dev_data->chunk_len = chunk_len;
xfer.p_tx_buffer = ctx->tx_buf;
xfer.tx_length = spi_context_tx_buf_on(ctx) ? chunk_len : 0;
xfer.p_rx_buffer = ctx->rx_buf;
xfer.rx_length = spi_context_rx_buf_on(ctx) ? chunk_len : 0;
result = nrfx_spi_xfer(&get_dev_config(dev)->spi, &xfer, 0);
if (result == NRFX_SUCCESS) {
return;
}
error = -EIO;
}
spi_context_cs_control(ctx, false);
LOG_DBG("Transaction finished with status %d", error);
spi_context_complete(ctx, error);
dev_data->busy = false;
}
static int transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
struct k_poll_signal *signal)
{
struct spi_nrfx_data *dev_data = get_dev_data(dev);
int error;
spi_context_lock(&dev_data->ctx, asynchronous, signal, spi_cfg);
error = configure(dev, spi_cfg);
if (error == 0) {
dev_data->busy = true;
spi_context_buffers_setup(&dev_data->ctx, tx_bufs, rx_bufs, 1);
spi_context_cs_control(&dev_data->ctx, true);
transfer_next_chunk(dev);
error = spi_context_wait_for_completion(&dev_data->ctx);
}
spi_context_release(&dev_data->ctx, error);
return error;
}
static int spi_nrfx_transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_nrfx_transceive_async(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
struct k_poll_signal *async)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, async);
}
#endif /* CONFIG_SPI_ASYNC */
static int spi_nrfx_release(const struct device *dev,
const struct spi_config *spi_cfg)
{
struct spi_nrfx_data *dev_data = get_dev_data(dev);
if (!spi_context_configured(&dev_data->ctx, spi_cfg)) {
return -EINVAL;
}
if (dev_data->busy) {
return -EBUSY;
}
spi_context_unlock_unconditionally(&dev_data->ctx);
return 0;
}
static const struct spi_driver_api spi_nrfx_driver_api = {
.transceive = spi_nrfx_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_nrfx_transceive_async,
#endif
.release = spi_nrfx_release,
};
static void event_handler(const nrfx_spi_evt_t *p_event, void *p_context)
{
struct spi_nrfx_data *dev_data = p_context;
if (p_event->type == NRFX_SPI_EVENT_DONE) {
spi_context_update_tx(&dev_data->ctx, 1, dev_data->chunk_len);
spi_context_update_rx(&dev_data->ctx, 1, dev_data->chunk_len);
transfer_next_chunk(dev_data->dev);
}
}
static int init_spi(const struct device *dev)
{
struct spi_nrfx_data *dev_data = get_dev_data(dev);
nrfx_err_t result;
dev_data->dev = dev;
/* This sets only default values of frequency, mode and bit order.
* The proper ones are set in configure() when a transfer is started.
*/
result = nrfx_spi_init(&get_dev_config(dev)->spi,
&get_dev_config(dev)->config,
event_handler,
dev_data);
if (result != NRFX_SUCCESS) {
LOG_ERR("Failed to initialize device: %s", dev->name);
return -EBUSY;
}
#ifdef CONFIG_PM_DEVICE
dev_data->pm_state = PM_DEVICE_ACTIVE_STATE;
#endif
return 0;
}
#ifdef CONFIG_PM_DEVICE
static int spi_nrfx_pm_control(const struct device *dev,
uint32_t ctrl_command,
void *context, pm_device_cb cb, void *arg)
{
int ret = 0;
struct spi_nrfx_data *data = get_dev_data(dev);
const struct spi_nrfx_config *config = get_dev_config(dev);
if (ctrl_command == PM_DEVICE_STATE_SET) {
uint32_t new_state = *((const uint32_t *)context);
if (new_state != data->pm_state) {
switch (new_state) {
case PM_DEVICE_ACTIVE_STATE:
ret = init_spi(dev);
/* Force reconfiguration before next transfer */
data->ctx.config = NULL;
break;
case PM_DEVICE_LOW_POWER_STATE:
case PM_DEVICE_SUSPEND_STATE:
case PM_DEVICE_OFF_STATE:
if (data->pm_state == PM_DEVICE_ACTIVE_STATE) {
nrfx_spi_uninit(&config->spi);
}
break;
default:
ret = -ENOTSUP;
}
if (!ret) {
data->pm_state = new_state;
}
}
} else {
__ASSERT_NO_MSG(ctrl_command == PM_DEVICE_STATE_GET);
*((uint32_t *)context) = data->pm_state;
}
if (cb) {
cb(dev, ret, context, arg);
}
return ret;
}
#endif /* CONFIG_PM_DEVICE */
/*
* Current factors requiring use of DT_NODELABEL:
*
* - NRFX_SPI_INSTANCE() requires an SoC instance number
* - soc-instance-numbered kconfig enables
* - ORC is a SoC-instance-numbered kconfig option instead of a DT property
*/
#define SPI(idx) DT_NODELABEL(spi##idx)
#define SPI_PROP(idx, prop) DT_PROP(SPI(idx), prop)
#define SPI_NRFX_MISO_PULL(idx) \
(SPI_PROP(idx, miso_pull_up) \
? SPI_PROP(idx, miso_pull_down) \
? -1 /* invalid configuration */\
: NRF_GPIO_PIN_PULLUP \
: SPI_PROP(idx, miso_pull_down) \
? NRF_GPIO_PIN_PULLDOWN \
: NRF_GPIO_PIN_NOPULL)
#define SPI_NRFX_SPI_DEVICE(idx) \
BUILD_ASSERT( \
!SPI_PROP(idx, miso_pull_up) || !SPI_PROP(idx, miso_pull_down),\
"SPI"#idx \
": cannot enable both pull-up and pull-down on MISO line"); \
static int spi_##idx##_init(const struct device *dev) \
{ \
IRQ_CONNECT(DT_IRQN(SPI(idx)), DT_IRQ(SPI(idx), priority), \
nrfx_isr, nrfx_spi_##idx##_irq_handler, 0); \
int err = init_spi(dev); \
spi_context_unlock_unconditionally(&get_dev_data(dev)->ctx); \
return err; \
} \
static struct spi_nrfx_data spi_##idx##_data = { \
SPI_CONTEXT_INIT_LOCK(spi_##idx##_data, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_##idx##_data, ctx), \
.busy = false, \
}; \
static const struct spi_nrfx_config spi_##idx##z_config = { \
.spi = NRFX_SPI_INSTANCE(idx), \
.config = { \
.sck_pin = SPI_PROP(idx, sck_pin), \
.mosi_pin = SPI_PROP(idx, mosi_pin), \
.miso_pin = SPI_PROP(idx, miso_pin), \
.ss_pin = NRFX_SPI_PIN_NOT_USED, \
.orc = CONFIG_SPI_##idx##_NRF_ORC, \
.frequency = NRF_SPI_FREQ_4M, \
.mode = NRF_SPI_MODE_0, \
.bit_order = NRF_SPI_BIT_ORDER_MSB_FIRST, \
.miso_pull = SPI_NRFX_MISO_PULL(idx), \
} \
}; \
DEVICE_DT_DEFINE(SPI(idx), \
spi_##idx##_init, \
spi_nrfx_pm_control, \
&spi_##idx##_data, \
&spi_##idx##z_config, \
POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \
&spi_nrfx_driver_api)
#ifdef CONFIG_SPI_0_NRF_SPI
SPI_NRFX_SPI_DEVICE(0);
#endif
#ifdef CONFIG_SPI_1_NRF_SPI
SPI_NRFX_SPI_DEVICE(1);
#endif
#ifdef CONFIG_SPI_2_NRF_SPI
SPI_NRFX_SPI_DEVICE(2);
#endif