zephyr/arch/riscv/core/smp.c

170 lines
3.9 KiB
C

/*
* Copyright (c) 2021 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/init.h>
#include <zephyr/kernel.h>
#include <ksched.h>
#include <zephyr/irq.h>
#include <zephyr/sys/atomic.h>
#include <zephyr/arch/riscv/irq.h>
#include <zephyr/drivers/pm_cpu_ops.h>
volatile struct {
arch_cpustart_t fn;
void *arg;
} riscv_cpu_init[CONFIG_MP_MAX_NUM_CPUS];
volatile uintptr_t __noinit riscv_cpu_wake_flag;
volatile uintptr_t riscv_cpu_boot_flag;
volatile void *riscv_cpu_sp;
extern void __start(void);
#if defined(CONFIG_RISCV_SOC_INTERRUPT_INIT)
void soc_interrupt_init(void);
#endif
void arch_cpu_start(int cpu_num, k_thread_stack_t *stack, int sz,
arch_cpustart_t fn, void *arg)
{
riscv_cpu_init[cpu_num].fn = fn;
riscv_cpu_init[cpu_num].arg = arg;
riscv_cpu_sp = K_KERNEL_STACK_BUFFER(stack) + sz;
riscv_cpu_boot_flag = 0U;
#ifdef CONFIG_PM_CPU_OPS
if (pm_cpu_on(cpu_num, (uintptr_t)&__start)) {
printk("Failed to boot secondary CPU %d\n", cpu_num);
return;
}
#endif
while (riscv_cpu_boot_flag == 0U) {
riscv_cpu_wake_flag = _kernel.cpus[cpu_num].arch.hartid;
}
}
void arch_secondary_cpu_init(int hartid)
{
unsigned int i;
unsigned int cpu_num = 0;
for (i = 0; i < CONFIG_MP_MAX_NUM_CPUS; i++) {
if (_kernel.cpus[i].arch.hartid == hartid) {
cpu_num = i;
}
}
csr_write(mscratch, &_kernel.cpus[cpu_num]);
#ifdef CONFIG_SMP
_kernel.cpus[cpu_num].arch.online = true;
#endif
#if defined(CONFIG_MULTITHREADING) && defined(CONFIG_THREAD_LOCAL_STORAGE)
__asm__("mv tp, %0" : : "r" (z_idle_threads[cpu_num].tls));
#endif
#if defined(CONFIG_RISCV_SOC_INTERRUPT_INIT)
soc_interrupt_init();
#endif
#ifdef CONFIG_RISCV_PMP
z_riscv_pmp_init();
#endif
#ifdef CONFIG_SMP
irq_enable(RISCV_IRQ_MSOFT);
#endif
riscv_cpu_init[cpu_num].fn(riscv_cpu_init[cpu_num].arg);
}
#ifdef CONFIG_SMP
#define MSIP_BASE 0x2000000UL
#define MSIP(hartid) ((volatile uint32_t *)MSIP_BASE)[hartid]
static atomic_val_t cpu_pending_ipi[CONFIG_MP_MAX_NUM_CPUS];
#define IPI_SCHED 0
#define IPI_FPU_FLUSH 1
void arch_sched_ipi(void)
{
unsigned int key = arch_irq_lock();
unsigned int id = _current_cpu->id;
unsigned int num_cpus = arch_num_cpus();
for (unsigned int i = 0; i < num_cpus; i++) {
if (i != id && _kernel.cpus[i].arch.online) {
atomic_set_bit(&cpu_pending_ipi[i], IPI_SCHED);
MSIP(_kernel.cpus[i].arch.hartid) = 1;
}
}
arch_irq_unlock(key);
}
#ifdef CONFIG_FPU_SHARING
void arch_flush_fpu_ipi(unsigned int cpu)
{
atomic_set_bit(&cpu_pending_ipi[cpu], IPI_FPU_FLUSH);
MSIP(_kernel.cpus[cpu].arch.hartid) = 1;
}
#endif
static void sched_ipi_handler(const void *unused)
{
ARG_UNUSED(unused);
MSIP(csr_read(mhartid)) = 0;
atomic_val_t pending_ipi = atomic_clear(&cpu_pending_ipi[_current_cpu->id]);
if (pending_ipi & ATOMIC_MASK(IPI_SCHED)) {
z_sched_ipi();
}
#ifdef CONFIG_FPU_SHARING
if (pending_ipi & ATOMIC_MASK(IPI_FPU_FLUSH)) {
/* disable IRQs */
csr_clear(mstatus, MSTATUS_IEN);
/* perform the flush */
arch_flush_local_fpu();
/*
* No need to re-enable IRQs here as long as
* this remains the last case.
*/
}
#endif
}
#ifdef CONFIG_FPU_SHARING
/*
* Make sure there is no pending FPU flush request for this CPU while
* waiting for a contended spinlock to become available. This prevents
* a deadlock when the lock we need is already taken by another CPU
* that also wants its FPU content to be reinstated while such content
* is still live in this CPU's FPU.
*/
void arch_spin_relax(void)
{
atomic_val_t *pending_ipi = &cpu_pending_ipi[_current_cpu->id];
if (atomic_test_and_clear_bit(pending_ipi, IPI_FPU_FLUSH)) {
/*
* We may not be in IRQ context here hence cannot use
* arch_flush_local_fpu() directly.
*/
arch_float_disable(_current_cpu->arch.fpu_owner);
}
}
#endif
int arch_smp_init(void)
{
IRQ_CONNECT(RISCV_IRQ_MSOFT, 0, sched_ipi_handler, NULL, 0);
irq_enable(RISCV_IRQ_MSOFT);
return 0;
}
SYS_INIT(arch_smp_init, PRE_KERNEL_2, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
#endif /* CONFIG_SMP */