zephyr/kernel/include/kernel_internal.h

222 lines
6.8 KiB
C

/*
* Copyright (c) 2010-2012, 2014-2015 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Architecture-independent private kernel APIs
*
* This file contains private kernel APIs that are not architecture-specific.
*/
#ifndef _NANO_INTERNAL__H_
#define _NANO_INTERNAL__H_
#include <kernel.h>
#ifndef _ASMLANGUAGE
#ifdef __cplusplus
extern "C" {
#endif
/* Early boot functions */
void _bss_zero(void);
#ifdef CONFIG_XIP
void _data_copy(void);
#else
static inline void _data_copy(void)
{
/* Do nothing */
}
#endif
FUNC_NORETURN void _Cstart(void);
extern FUNC_NORETURN void _thread_entry(k_thread_entry_t entry,
void *p1, void *p2, void *p3);
/* Implemented by architectures. Only called from _setup_new_thread. */
extern void _new_thread(struct k_thread *thread, k_thread_stack_t *pStack,
size_t stackSize, k_thread_entry_t entry,
void *p1, void *p2, void *p3,
int prio, unsigned int options);
extern void _setup_new_thread(struct k_thread *new_thread,
k_thread_stack_t *stack, size_t stack_size,
k_thread_entry_t entry,
void *p1, void *p2, void *p3,
int prio, u32_t options);
#ifdef CONFIG_USERSPACE
/**
* @brief Get the maximum number of partitions for a memory domain
*
* A memory domain is a container data structure containing some number of
* memory partitions, where each partition represents a memory range with
* access policies.
*
* MMU-based systems don't have a limit here, but MPU-based systems will
* have an upper bound on how many different regions they can manage
* simultaneously.
*
* @return Max number of free regions, or -1 if there is no limit
*/
extern int _arch_mem_domain_max_partitions_get(void);
/**
* @brief Configure the memory domain of the thread.
*
* A memory domain is a container data structure containing some number of
* memory partitions, where each partition represents a memory range with
* access policies. This api will configure the appropriate hardware
* registers to make it work.
*
* @param thread Thread which needs to be configured.
*/
extern void _arch_mem_domain_configure(struct k_thread *thread);
/**
* @brief Remove a partition from the memory domain
*
* A memory domain contains multiple partitions and this API provides the
* freedom to remove a particular partition while keeping others intact.
* This API will handle any arch/HW specific changes that needs to be done.
*
* @param domain The memory domain structure
* @param partition_id The partition that needs to be deleted
*/
extern void _arch_mem_domain_partition_remove(struct k_mem_domain *domain,
u32_t partition_id);
/**
* @brief Remove the memory domain
*
* A memory domain contains multiple partitions and this API will traverse
* all these to reset them back to default setting.
* This API will handle any arch/HW specific changes that needs to be done.
*
* @param domain The memory domain structure which needs to be deleted.
*/
extern void _arch_mem_domain_destroy(struct k_mem_domain *domain);
#endif
#ifdef CONFIG_USERSPACE
/**
* @brief Check memory region permissions
*
* Given a memory region, return whether the current memory management hardware
* configuration would allow a user thread to read/write that region. Used by
* system calls to validate buffers coming in from userspace.
*
* @param addr start address of the buffer
* @param size the size of the buffer
* @param write If nonzero, additionally check if the area is writable.
* Otherwise, just check if the memory can be read.
*
* @return nonzero if the permissions don't match.
*/
extern int _arch_buffer_validate(void *addr, size_t size, int write);
/**
* Perform a one-way transition from supervisor to kernel mode.
*
* Implementations of this function must do the following:
* - Reset the thread's stack pointer to a suitable initial value. We do not
* need any prior context since this is a one-way operation.
* - Set up any kernel stack region for the CPU to use during privilege
* elevation
* - Put the CPU in whatever its equivalent of user mode is
* - Transfer execution to _new_thread() passing along all the supplied
* arguments, in user mode.
*
* @param Entry point to start executing as a user thread
* @param p1 1st parameter to user thread
* @param p2 2nd parameter to user thread
* @param p3 3rd parameter to user thread
*/
extern FUNC_NORETURN
void _arch_user_mode_enter(k_thread_entry_t user_entry, void *p1, void *p2,
void *p3);
/**
* @brief Induce a kernel oops that appears to come from a specific location
*
* Normally, k_oops() generates an exception that appears to come from the
* call site of the k_oops() itself.
*
* However, when validating arguments to a system call, if there are problems
* we want the oops to appear to come from where the system call was invoked
* and not inside the validation function.
*
* @param ssf System call stack frame pointer. This gets passed as an argument
* to _k_syscall_handler_t functions and its contents are completely
* architecture specific.
*/
extern FUNC_NORETURN void _arch_syscall_oops(void *ssf);
#endif /* CONFIG_USERSPACE */
/**
* @brief Allocate some memory from the current thread's resource pool
*
* Threads may be assigned a resource pool, which will be used to allocate
* memory on behalf of certain kernel and driver APIs. Memory reserved
* in this way should be freed with k_free().
*
* @param size Memory allocation size
* @return A pointer to the allocated memory, or NULL if there is insufficient
* RAM in the pool or the thread has no resource pool assigned
*/
void *z_thread_malloc(size_t size);
/* set and clear essential thread flag */
extern void _thread_essential_set(void);
extern void _thread_essential_clear(void);
/* clean up when a thread is aborted */
#if defined(CONFIG_THREAD_MONITOR)
extern void _thread_monitor_exit(struct k_thread *thread);
#else
#define _thread_monitor_exit(thread) \
do {/* nothing */ \
} while (0)
#endif /* CONFIG_THREAD_MONITOR */
extern void smp_init(void);
extern void smp_timer_init(void);
#ifdef CONFIG_NEWLIB_LIBC
/**
* @brief Fetch dimentions of newlib heap area for _sbrk()
*
* This memory region is used for heap allocations by the newlib C library.
* If user threads need to have access to this, the results returned can be
* used to program memory protection hardware appropriately.
*
* @param base Pointer to void pointer, filled in with the heap starting
* address
* @param size Pointer to a size_y, filled in with the maximum heap size
*/
extern void z_newlib_get_heap_bounds(void **base, size_t *size);
#endif
extern u32_t z_early_boot_rand32_get(void);
#if CONFIG_STACK_POINTER_RANDOM
extern int z_stack_adjust_initialized;
#endif
#ifdef __cplusplus
}
#endif
#endif /* _ASMLANGUAGE */
#endif /* _NANO_INTERNAL__H_ */