zephyr/arch/xtensa/core/fatal.c

275 lines
6.6 KiB
C

/*
* Copyright (c) 2016 Cadence Design Systems, Inc.
* SPDX-License-Identifier: Apache-2.0
*/
#include <kernel.h>
#include <arch/cpu.h>
#include <kernel_structs.h>
#include <inttypes.h>
#include <kernel_arch_data.h>
#include <misc/printk.h>
#include <xtensa/specreg.h>
const NANO_ESF _default_esf = {
{0xdeaddead}, /* sp */
0xdeaddead, /* pc */
};
/* Need to do this as a macro since regnum must be an immediate value */
#define get_sreg(regnum_p) ({ \
unsigned int retval; \
__asm__ volatile( \
"rsr %[retval], %[regnum]\n\t" \
: [retval] "=r" (retval) \
: [regnum] "i" (regnum_p)); \
retval; \
})
/**
*
* @brief Fatal error handler
*
* This routine is called when fatal error conditions are detected by software
* and is responsible only for reporting the error. Once reported, it then
* invokes the user provided routine _SysFatalErrorHandler() which is
* responsible for implementing the error handling policy.
*
* The caller is expected to always provide a usable ESF. In the event that the
* fatal error does not have a hardware generated ESF, the caller should either
* create its own or use a pointer to the global default ESF <_default_esf>.
*
* @param reason the reason that the handler was called
* @param pEsf pointer to the exception stack frame
*
* @return This function does not return.
*/
FUNC_NORETURN void _NanoFatalErrorHandler(unsigned int reason,
const NANO_ESF *pEsf)
{
switch (reason) {
case _NANO_ERR_HW_EXCEPTION:
case _NANO_ERR_RESERVED_IRQ:
break;
case _NANO_ERR_INVALID_TASK_EXIT:
printk("***** Invalid Exit Software Error! *****\n");
break;
#if defined(CONFIG_STACK_CANARIES) || defined(CONFIG_STACK_SENTINEL)
case _NANO_ERR_STACK_CHK_FAIL:
printk("***** Stack Check Fail! *****\n");
break;
#endif /* CONFIG_STACK_CANARIES */
case _NANO_ERR_ALLOCATION_FAIL:
printk("**** Kernel Allocation Failure! ****\n");
break;
case _NANO_ERR_KERNEL_OOPS:
printk("***** Kernel OOPS! *****\n");
break;
case _NANO_ERR_KERNEL_PANIC:
printk("***** Kernel Panic! *****\n");
break;
default:
printk("**** Unknown Fatal Error %d! ****\n", reason);
break;
}
printk("Current thread ID = %p\n"
"Faulting instruction address = 0x%x\n",
k_current_get(),
pEsf->pc);
/*
* Now that the error has been reported, call the user implemented
* policy
* to respond to the error. The decisions as to what responses are
* appropriate to the various errors are something the customer must
* decide.
*/
_SysFatalErrorHandler(reason, pEsf);
}
#ifdef CONFIG_PRINTK
static char *cause_str(unsigned int cause_code)
{
switch (cause_code) {
case 0:
return "illegal instruction";
case 1:
return "syscall";
case 2:
return "instr fetch error";
case 3:
return "load/store error";
case 4:
return "level-1 interrupt";
case 5:
return "alloca";
case 6:
return "divide by zero";
case 8:
return "privileged";
case 9:
return "load/store alignment";
case 12:
return "instr PIF data error";
case 13:
return "load/store PIF data error";
case 14:
return "instr PIF addr error";
case 15:
return "load/store PIF addr error";
case 16:
return "instr TLB miss";
case 17:
return "instr TLB multi hit";
case 18:
return "instr fetch privilege";
case 20:
return "inst fetch prohibited";
case 24:
return "load/store TLB miss";
case 25:
return "load/store TLB multi hit";
case 26:
return "load/store privilege";
case 28:
return "load prohibited";
case 29:
return "store prohibited";
case 32: case 33: case 34: case 35: case 36: case 37: case 38: case 39:
return "coprocessor disabled";
default:
return "unknown/reserved";
}
}
#endif
static inline unsigned int get_bits(int offset, int num_bits, unsigned int val)
{
int mask;
mask = (1 << num_bits) - 1;
val = val >> offset;
return val & mask;
}
static void dump_exc_state(void)
{
#ifdef CONFIG_PRINTK
unsigned int cause, ps;
cause = get_sreg(EXCCAUSE);
ps = get_sreg(PS);
printk("Exception cause %d (%s):\n"
" EPC1 : 0x%08x EXCSAVE1 : 0x%08x EXCVADDR : 0x%08x\n",
cause, cause_str(cause), get_sreg(EPC_1),
get_sreg(EXCSAVE_1), get_sreg(EXCVADDR));
printk("Program state (PS):\n"
" INTLEVEL : %02d EXCM : %d UM : %d RING : %d WOE : %d\n",
get_bits(0, 4, ps), get_bits(4, 1, ps), get_bits(5, 1, ps),
get_bits(6, 2, ps), get_bits(18, 1, ps));
#ifndef __XTENSA_CALL0_ABI__
printk(" OWB : %02d CALLINC : %d\n",
get_bits(8, 4, ps), get_bits(16, 2, ps));
#endif
#endif /* CONFIG_PRINTK */
}
FUNC_NORETURN void FatalErrorHandler(void)
{
printk("*** Unhandled exception ****\n");
dump_exc_state();
_NanoFatalErrorHandler(_NANO_ERR_HW_EXCEPTION, &_default_esf);
}
FUNC_NORETURN void ReservedInterruptHandler(unsigned int intNo)
{
printk("*** Reserved Interrupt ***\n");
dump_exc_state();
printk("INTENABLE = 0x%x\n"
"INTERRUPT = 0x%x (%d)\n",
get_sreg(INTENABLE), (1 << intNo), intNo);
_NanoFatalErrorHandler(_NANO_ERR_RESERVED_IRQ, &_default_esf);
}
void exit(int return_code)
{
#ifdef XT_SIMULATOR
__asm__ (
"mov a3, %[code]\n\t"
"movi a2, %[call]\n\t"
"simcall\n\t"
:
: [code] "r" (return_code), [call] "i" (SYS_exit)
: "a3", "a2");
#else
printk("exit(%d)\n", return_code);
k_panic();
#endif
}
/**
*
* @brief Fatal error handler
*
* This routine implements the corrective action to be taken when the system
* detects a fatal error.
*
* This sample implementation attempts to abort the current thread and allow
* the system to continue executing, which may permit the system to continue
* functioning with degraded capabilities.
*
* System designers may wish to enhance or substitute this sample
* implementation to take other actions, such as logging error (or debug)
* information to a persistent repository and/or rebooting the system.
*
* @param reason the fatal error reason
* @param pEsf pointer to exception stack frame
*
* @return N/A
*/
FUNC_NORETURN __weak void _SysFatalErrorHandler(unsigned int reason,
const NANO_ESF *pEsf)
{
ARG_UNUSED(pEsf);
#if !defined(CONFIG_SIMPLE_FATAL_ERROR_HANDLER)
#ifdef CONFIG_STACK_SENTINEL
if (reason == _NANO_ERR_STACK_CHK_FAIL) {
goto hang_system;
}
#endif
if (reason == _NANO_ERR_KERNEL_PANIC) {
goto hang_system;
}
if (k_is_in_isr() || _is_thread_essential()) {
printk("Fatal fault in %s! Spinning...\n",
k_is_in_isr() ? "ISR" : "essential thread");
goto hang_system;
}
printk("Fatal fault in thread %p! Aborting.\n", _current);
k_thread_abort(_current);
hang_system:
#else
ARG_UNUSED(reason);
#endif
#ifdef XT_SIMULATOR
exit(255 - reason);
#else
for (;;) {
k_cpu_idle();
}
#endif
CODE_UNREACHABLE;
}