zephyr/kernel/microkernel/k_ticker.c

247 lines
6.2 KiB
C

/* k_ticker.c - microkernel tick event handler */
/*
* Copyright (c) 1997-2010, 2012-2015 Wind River Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2) Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3) Neither the name of Wind River Systems nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
DESCRIPTION
This module implements the microkernel's tick event handler.
*/
#include <nanokernel.h>
#include <arch/cpu.h>
#include <micro_private.h>
#include <drivers/system_timer.h>
#include <microkernel.h>
#include <microkernel/ticks.h>
#include <toolchain.h>
#include <sections.h>
int64_t _k_sys_clock_tick_count = 0;
#ifdef CONFIG_TIMESLICING
static int32_t slice_count = (int32_t)0;
static int32_t slice_time = (int32_t)CONFIG_TIMESLICE_SIZE;
static kpriority_t slice_prio =
(kpriority_t)CONFIG_TIMESLICE_PRIORITY;
#endif /* CONFIG_TIMESLICING */
#ifdef CONFIG_TICKLESS_IDLE
/* Number of ticks elapsed that have not been announced to the microkernel */
int32_t _sys_idle_elapsed_ticks = 0; /* Initial value must be 0 */
#endif
#ifdef CONFIG_SYS_CLOCK_EXISTS
int sys_clock_us_per_tick = 1000000 / sys_clock_ticks_per_sec;
int sys_clock_hw_cycles_per_tick =
sys_clock_hw_cycles_per_sec / sys_clock_ticks_per_sec;
#else
/* don't initialize to avoid division-by-zero error */
int sys_clock_us_per_tick;
int sys_clock_hw_cycles_per_tick;
#endif
int32_t task_tick_get_32(void)
{
return (int32_t)_k_sys_clock_tick_count;
}
int64_t task_tick_get(void)
{
int64_t ticks;
int key = irq_lock();
ticks = _k_sys_clock_tick_count;
irq_unlock(key);
return ticks;
}
/**
*
* @brief Increment system clock by "N" ticks
*
* Interrupts are locked while updating clock since some CPUs do not support
* native atomic operations on 64 bit values.
* @param inc Increment
* @return N/A
*/
static void sys_clock_increment(int inc)
{
int key = irq_lock();
_k_sys_clock_tick_count += inc;
irq_unlock(key);
}
/**
* @internal
* @brief Task level debugging tick handler
*
* If task level debugging is configured this routine updates the low resolution
* debugging timer and determines if task level processing should be suspended.
*
* @return 0 if task level processing should be halted or 1 if not
*
*/
#ifdef CONFIG_TASK_DEBUG
uint32_t __noinit _k_debug_sys_clock_tick_count;
static inline int _TlDebugUpdate(int32_t ticks)
{
_k_debug_sys_clock_tick_count += ticks;
return !_k_debug_halt;
}
#else
#define _TlDebugUpdate(ticks) 1
#endif
/**
* @internal
* @brief Tick handler time slice logic
*
* This routine checks to see if it is time for the current task
* to relinquish control, and yields CPU if so.
*
* @return N/A
*
*/
static inline void _TimeSliceUpdate(void)
{
#ifdef CONFIG_TIMESLICING
int yield = slice_time && (_k_current_task->priority >= slice_prio) &&
(++slice_count >= slice_time);
if (yield) {
slice_count = 0;
_k_task_yield(NULL);
}
#else
/* do nothing */
#endif /* CONFIG_TIMESLICING */
}
/**
* @internal
* @brief Get elapsed ticks
*
* If tickless idle support is configured this routine returns the number
* of ticks since going idle and then resets the global elapsed tick counter back
* to zero indicating all elapsed ticks have been consumed. This is done with
* interrupts locked to prevent the timer ISR from modifying the global elapsed
* tick counter.
* If tickless idle support is not configured in it simply returns 1.
*
* @return number of ticks to process
*/
static inline int32_t _SysIdleElapsedTicksGet(void)
{
#ifdef CONFIG_TICKLESS_IDLE
int32_t ticks;
int key;
key = irq_lock();
ticks = _sys_idle_elapsed_ticks;
_sys_idle_elapsed_ticks = 0;
irq_unlock(key);
return ticks;
#else
/* A single tick always elapses when not in tickless mode */
return 1;
#endif
}
/**
*
* @brief Microkernel tick handler
*
* This routine informs other microkernel subsystems that a tick event has
* occurred.
* @param even Event
* @return 1
*/
int _k_ticker(int event)
{
(void)event; /* prevent "unused argument" compiler warning */
int32_t ticks;
ticks = _SysIdleElapsedTicksGet();
_k_workload_monitor_update();
if (_TlDebugUpdate(ticks)) {
_TimeSliceUpdate();
_k_timer_list_update(ticks);
sys_clock_increment(ticks);
_nano_sys_clock_tick_announce((uint32_t)ticks);
}
return 1;
}
#ifdef CONFIG_TIMESLICING
void sys_scheduler_time_slice_set(int32_t t, kpriority_t p)
{
slice_time = t;
slice_prio = p;
}
#endif /* CONFIG_TIMESLICING */
/**
*
* @brief Handle elapsed ticks calculation request
*
* This routine, called by _k_server(), handles the request for calculating the
* time elapsed since the specified reference time.
*
* @return N/A
*/
void _k_time_elapse(struct k_args *P)
{
int64_t now = task_tick_get();
P->args.c1.time2 = now - P->args.c1.time1;
P->args.c1.time1 = now;
}
int64_t task_tick_delta(int64_t *reftime /* pointer to reference time */
)
{
struct k_args A;
A.Comm = _K_SVC_TIME_ELAPSE;
A.args.c1.time1 = *reftime;
KERNEL_ENTRY(&A);
*reftime = A.args.c1.time1;
return A.args.c1.time2;
}