zephyr/tests/benchmarks/sched
Anas Nashif 7f378d6ef8 benchmarks: sched: capture output and evaluate
We were running this as a test and not evluating the output. Now we
verify the output and stop treating this as a ztest item.

Signed-off-by: Anas Nashif <anas.nashif@intel.com>
2019-04-08 10:46:55 -04:00
..
src all: Add 'U' suffix when using unsigned variables 2019-03-28 17:15:58 -05:00
CMakeLists.txt license: cleanup: add SPDX Apache-2.0 license identifier 2019-04-07 08:45:22 -04:00
README.rst
prj.conf tests: CONFIG_TEST_USERSPACE now off by default 2019-04-06 14:30:42 -04:00
testcase.yaml benchmarks: sched: capture output and evaluate 2019-04-08 10:46:55 -04:00

README.rst

Scheduler Microbenchmark
########################

This is a scheduler microbenchmark, designed to measure minimum
latencies (not scaling performance) of specific low level scheduling
primitives independent of overhead from application or API
abstractions.  It works very simply: a main thread creates a "partner"
thread at a higher priority, the partner then sleeps using
_pend_curr_irqlock().  From this initial state:

1. The main thread calls _unpend_first_thread()
2. The main thread calls _ready_thread()
3. The main thread calls k_yield()
   (the kernel switches to the partner thread)
4. The partner thread then runs and calls _pend_curr_irqlock() again
   (the kernel switches to the main thread)
5. The main thread returns from k_yield()

It then iterates this many times, reporting timestamp latencies
between each numbered step and for the whole cycle, and a running
average for all cycles run.

Note that because this involves no timer interaction (except, on some
architectures, k_cycle_get_32()), it works correctly when run in QEMU
using the -icount argument, which can produce 100% deterministic
behavior (not cycle-exact hardware simulation, but exactly N
instructions per simulated nanosecond).  You can enable this using an
environment variable (set at cmake time -- it's not enough to do this
for the subsequent make/ninja invocation, cmake needs to see the
variable itself):

    export QEMU_EXTRA_FLAGS="-icount shift=0,align=off,sleep=off"