613 lines
15 KiB
C
613 lines
15 KiB
C
/*
|
|
* Copyright (c) 2016 Wind River Systems, Inc.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/**
|
|
* @brief Memory pools.
|
|
*/
|
|
|
|
#include <kernel.h>
|
|
#include <kernel_structs.h>
|
|
#include <debug/object_tracing_common.h>
|
|
#include <ksched.h>
|
|
#include <wait_q.h>
|
|
#include <init.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#define _QUAD_BLOCK_AVAILABLE 0x0F
|
|
#define _QUAD_BLOCK_ALLOCATED 0x0
|
|
|
|
extern struct k_mem_pool _k_mem_pool_list_start[];
|
|
extern struct k_mem_pool _k_mem_pool_list_end[];
|
|
|
|
struct k_mem_pool *_trace_list_k_mem_pool;
|
|
|
|
static void init_one_memory_pool(struct k_mem_pool *pool);
|
|
|
|
/**
|
|
*
|
|
* @brief Initialize kernel memory pool subsystem
|
|
*
|
|
* Perform any initialization of memory pool that wasn't done at build time.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
static int init_static_pools(struct device *unused)
|
|
{
|
|
ARG_UNUSED(unused);
|
|
struct k_mem_pool *pool;
|
|
|
|
/* perform initialization for each memory pool */
|
|
|
|
for (pool = _k_mem_pool_list_start;
|
|
pool < _k_mem_pool_list_end;
|
|
pool++) {
|
|
init_one_memory_pool(pool);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
SYS_INIT(init_static_pools, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
|
|
|
|
/**
|
|
*
|
|
* @brief Initialize the memory pool
|
|
*
|
|
* Initialize the internal memory accounting structures of the memory pool
|
|
*
|
|
* @param pool memory pool descriptor
|
|
*
|
|
* @return N/A
|
|
*/
|
|
static void init_one_memory_pool(struct k_mem_pool *pool)
|
|
{
|
|
/*
|
|
* mark block set for largest block size
|
|
* as owning all of the memory pool buffer space
|
|
*/
|
|
|
|
int remaining_blocks = pool->nr_of_maxblocks;
|
|
int j = 0;
|
|
char *memptr = pool->bufblock;
|
|
|
|
while (remaining_blocks >= 4) {
|
|
pool->block_set[0].quad_block[j].mem_blocks = memptr;
|
|
pool->block_set[0].quad_block[j].mem_status =
|
|
_QUAD_BLOCK_AVAILABLE;
|
|
j++;
|
|
remaining_blocks -= 4;
|
|
memptr +=
|
|
OCTET_TO_SIZEOFUNIT(pool->block_set[0].block_size)
|
|
* 4;
|
|
}
|
|
|
|
if (remaining_blocks != 0) {
|
|
pool->block_set[0].quad_block[j].mem_blocks = memptr;
|
|
pool->block_set[0].quad_block[j].mem_status =
|
|
_QUAD_BLOCK_AVAILABLE >> (4 - remaining_blocks);
|
|
/* non-existent blocks are marked as unavailable */
|
|
}
|
|
|
|
/*
|
|
* note: all other block sets own no blocks, since their
|
|
* first quad-block has a NULL memory pointer
|
|
*/
|
|
sys_dlist_init(&pool->wait_q);
|
|
SYS_TRACING_OBJ_INIT(k_mem_pool, pool);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Determines which block set corresponds to the specified data size
|
|
*
|
|
* Finds the block set with the smallest blocks that can hold the specified
|
|
* amount of data.
|
|
*
|
|
* @return block set index
|
|
*/
|
|
static int compute_block_set_index(struct k_mem_pool *pool, size_t data_size)
|
|
{
|
|
size_t block_size = pool->min_block_size;
|
|
int offset = pool->nr_of_block_sets - 1;
|
|
|
|
while (data_size > block_size) {
|
|
block_size *= 4;
|
|
offset--;
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
|
|
/**
|
|
*
|
|
* @brief Return an allocated block to its block set
|
|
*
|
|
* @param ptr pointer to start of block
|
|
* @param pool memory pool descriptor
|
|
* @param index block set identifier
|
|
*
|
|
* @return N/A
|
|
*/
|
|
static void free_existing_block(char *ptr, struct k_mem_pool *pool, int index)
|
|
{
|
|
struct k_mem_pool_quad_block *quad_block =
|
|
pool->block_set[index].quad_block;
|
|
char *block_ptr;
|
|
uint32_t i, j;
|
|
|
|
/*
|
|
* search block set's quad-blocks until the block is located,
|
|
* then mark it as unused
|
|
*
|
|
* note: block *must* exist, so no need to do array bounds checking
|
|
*/
|
|
|
|
for (i = 0; ; i++) {
|
|
__ASSERT((i < pool->block_set[index].nr_of_entries) &&
|
|
(quad_block[i].mem_blocks != NULL),
|
|
"Attempt to free unallocated memory pool block\n");
|
|
|
|
block_ptr = quad_block[i].mem_blocks;
|
|
for (j = 0; j < 4; j++) {
|
|
if (ptr == block_ptr) {
|
|
quad_block[i].mem_status |= (1 << j);
|
|
return;
|
|
}
|
|
block_ptr += OCTET_TO_SIZEOFUNIT(
|
|
pool->block_set[index].block_size);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
*
|
|
* @brief Defragment the specified memory pool block sets
|
|
*
|
|
* Reassembles any quad-blocks that are entirely unused into larger blocks
|
|
* (to the extent permitted).
|
|
*
|
|
* @param pool memory pool descriptor
|
|
* @param start_block_set_index index of smallest block set to defragment
|
|
* @param last_block_set_index index of largest block set to defragment
|
|
*
|
|
* @return N/A
|
|
*/
|
|
static void defrag(struct k_mem_pool *pool,
|
|
int start_block_set_index, int last_block_set_index)
|
|
{
|
|
uint32_t i;
|
|
uint32_t k;
|
|
int j;
|
|
struct k_mem_pool_quad_block *quad_block;
|
|
|
|
/* process block sets from smallest to largest permitted sizes */
|
|
|
|
for (j = start_block_set_index; j > last_block_set_index; j--) {
|
|
|
|
quad_block = pool->block_set[j].quad_block;
|
|
i = 0;
|
|
|
|
do {
|
|
/* block set is done if no more quad-blocks exist */
|
|
|
|
if (quad_block[i].mem_blocks == NULL) {
|
|
break;
|
|
}
|
|
|
|
/* reassemble current quad-block, if possible */
|
|
|
|
if (quad_block[i].mem_status == _QUAD_BLOCK_AVAILABLE) {
|
|
|
|
/*
|
|
* mark the corresponding block in next larger
|
|
* block set as free
|
|
*/
|
|
|
|
free_existing_block(
|
|
quad_block[i].mem_blocks, pool, j - 1);
|
|
|
|
/*
|
|
* delete the quad-block from this block set
|
|
* by replacing it with the last quad-block
|
|
*
|
|
* (algorithm works even when the deleted
|
|
* quad-block is the last quad_block)
|
|
*/
|
|
|
|
k = i;
|
|
while (((k+1) !=
|
|
pool->block_set[j].nr_of_entries) &&
|
|
(quad_block[k + 1].mem_blocks != NULL)) {
|
|
k++;
|
|
}
|
|
|
|
quad_block[i].mem_blocks =
|
|
quad_block[k].mem_blocks;
|
|
quad_block[i].mem_status =
|
|
quad_block[k].mem_status;
|
|
|
|
quad_block[k].mem_blocks = NULL;
|
|
|
|
/* loop & process replacement quad_block[i] */
|
|
} else {
|
|
i++;
|
|
}
|
|
|
|
/* block set is done if at end of quad-block array */
|
|
|
|
} while (i < pool->block_set[j].nr_of_entries);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
*
|
|
* @brief Allocate block from an existing block set
|
|
*
|
|
* @param block_set pointer to block set
|
|
* @param unused_block_index the index of first unused quad-block
|
|
* when allocation fails, it is the number of quad
|
|
* blocks in the block set
|
|
*
|
|
* @return pointer to allocated block, or NULL if none available
|
|
*/
|
|
static char *get_existing_block(struct k_mem_pool_block_set *block_set,
|
|
int *unused_block_index)
|
|
{
|
|
char *found = NULL;
|
|
uint32_t i = 0;
|
|
int status;
|
|
int free_bit;
|
|
|
|
do {
|
|
/* give up if no more quad-blocks exist */
|
|
|
|
if (block_set->quad_block[i].mem_blocks == NULL) {
|
|
break;
|
|
}
|
|
|
|
/* allocate a block from current quad-block, if possible */
|
|
|
|
status = block_set->quad_block[i].mem_status;
|
|
if (status != _QUAD_BLOCK_ALLOCATED) {
|
|
/* identify first free block */
|
|
free_bit = find_lsb_set(status) - 1;
|
|
|
|
/* compute address of free block */
|
|
found = block_set->quad_block[i].mem_blocks +
|
|
(OCTET_TO_SIZEOFUNIT(free_bit *
|
|
block_set->block_size));
|
|
|
|
/* mark block as unavailable (using XOR to invert) */
|
|
block_set->quad_block[i].mem_status ^=
|
|
1 << free_bit;
|
|
#ifdef CONFIG_OBJECT_MONITOR
|
|
block_set->count++;
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
/* move on to next quad-block; give up if at end of array */
|
|
|
|
} while (++i < block_set->nr_of_entries);
|
|
|
|
*unused_block_index = i;
|
|
return found;
|
|
}
|
|
|
|
|
|
/**
|
|
*
|
|
* @brief Allocate a block, recursively fragmenting larger blocks if necessary
|
|
*
|
|
* @param pool memory pool descriptor
|
|
* @param index index of block set currently being examined
|
|
* @param start_index index of block set for which allocation is being done
|
|
*
|
|
* @return pointer to allocated block, or NULL if none available
|
|
*/
|
|
static char *get_block_recursive(struct k_mem_pool *pool,
|
|
int index, int start_index)
|
|
{
|
|
int i;
|
|
char *found, *larger_block;
|
|
struct k_mem_pool_block_set *fr_table;
|
|
|
|
/* give up if we've exhausted the set of maximum size blocks */
|
|
|
|
if (index < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
/* try allocating a block from the current block set */
|
|
|
|
fr_table = pool->block_set;
|
|
i = 0;
|
|
|
|
found = get_existing_block(&(fr_table[index]), &i);
|
|
if (found != NULL) {
|
|
return found;
|
|
}
|
|
|
|
#ifdef CONFIG_MEM_POOL_DEFRAG_BEFORE_SPLIT
|
|
/*
|
|
* do a partial defragmentation of memory pool & try allocating again
|
|
* - do this on initial invocation only, not recursive ones
|
|
* (since there is no benefit in repeating the defrag)
|
|
* - defrag only the blocks smaller than the desired size,
|
|
* and only until the size needed is reached
|
|
*
|
|
* note: defragging at this time tries to preserve the memory pool's
|
|
* larger blocks by fragmenting them only when necessary
|
|
* (i.e. at the cost of doing more frequent auto-defragmentations)
|
|
*/
|
|
|
|
if (index == start_index) {
|
|
defrag(pool, pool->nr_of_block_sets - 1, start_index);
|
|
found = get_existing_block(&(fr_table[index]), &i);
|
|
if (found != NULL) {
|
|
return found;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* try allocating a block from the next largest block set */
|
|
|
|
larger_block = get_block_recursive(pool, index - 1, start_index);
|
|
if (larger_block != NULL) {
|
|
/*
|
|
* add a new quad-block to the current block set,
|
|
* then mark one of its 4 blocks as used and return it
|
|
*
|
|
* note: "i" was earlier set to indicate the first unused
|
|
* quad-block entry in the current block set
|
|
*/
|
|
|
|
fr_table[index].quad_block[i].mem_blocks = larger_block;
|
|
fr_table[index].quad_block[i].mem_status =
|
|
_QUAD_BLOCK_AVAILABLE & (~0x1);
|
|
#ifdef CONFIG_OBJECT_MONITOR
|
|
fr_table[index].count++;
|
|
#endif
|
|
return larger_block;
|
|
}
|
|
|
|
#ifdef CONFIG_MEM_POOL_SPLIT_BEFORE_DEFRAG
|
|
/*
|
|
* do a partial defragmentation of memory pool & try allocating again
|
|
* - do this on initial invocation only, not recursive ones
|
|
* (since there is no benefit in repeating the defrag)
|
|
* - defrag only the blocks smaller than the desired size,
|
|
* and only until the size needed is reached
|
|
*
|
|
* note: defragging at this time tries to limit the cost of doing
|
|
* auto-defragmentations by doing them only when necessary
|
|
* (i.e. at the cost of fragmenting the memory pool's larger blocks)
|
|
*/
|
|
|
|
if (index == start_index) {
|
|
defrag(pool, pool->nr_of_block_sets - 1, start_index);
|
|
found = get_existing_block(&(fr_table[index]), &i);
|
|
if (found != NULL) {
|
|
return found;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return NULL; /* can't find (or create) desired block */
|
|
}
|
|
|
|
|
|
/**
|
|
*
|
|
* @brief Examine threads that are waiting for memory pool blocks.
|
|
*
|
|
* This routine attempts to satisfy any incomplete block allocation requests for
|
|
* the specified memory pool. It can be invoked either by the explicit freeing
|
|
* of a used block or as a result of defragmenting the pool (which may create
|
|
* one or more new, larger blocks).
|
|
*
|
|
* @return N/A
|
|
*/
|
|
static void block_waiters_check(struct k_mem_pool *pool)
|
|
{
|
|
char *found_block;
|
|
struct k_thread *waiter;
|
|
struct k_thread *next_waiter;
|
|
int offset;
|
|
|
|
unsigned int key = irq_lock();
|
|
waiter = (struct k_thread *)sys_dlist_peek_head(&pool->wait_q);
|
|
|
|
/* loop all waiters */
|
|
while (waiter != NULL) {
|
|
uint32_t req_size = (uint32_t)(waiter->base.swap_data);
|
|
|
|
/* locate block set to try allocating from */
|
|
offset = compute_block_set_index(pool, req_size);
|
|
|
|
/* allocate block (fragmenting a larger block, if needed) */
|
|
found_block = get_block_recursive(pool, offset, offset);
|
|
|
|
next_waiter = (struct k_thread *)sys_dlist_peek_next(
|
|
&pool->wait_q, &waiter->base.k_q_node);
|
|
|
|
/* if success : remove task from list and reschedule */
|
|
if (found_block != NULL) {
|
|
/* return found block */
|
|
_set_thread_return_value_with_data(waiter, 0,
|
|
found_block);
|
|
|
|
|
|
/*
|
|
* Schedule the thread. Threads will be rescheduled
|
|
* outside the function by k_sched_unlock()
|
|
*/
|
|
_unpend_thread(waiter);
|
|
_abort_thread_timeout(waiter);
|
|
_ready_thread(waiter);
|
|
}
|
|
waiter = next_waiter;
|
|
}
|
|
irq_unlock(key);
|
|
}
|
|
|
|
void k_mem_pool_defrag(struct k_mem_pool *pool)
|
|
{
|
|
_sched_lock();
|
|
|
|
/* do complete defragmentation of memory pool (i.e. all block sets) */
|
|
defrag(pool, pool->nr_of_block_sets - 1, 0);
|
|
|
|
/* reschedule anybody waiting for a block */
|
|
block_waiters_check(pool);
|
|
k_sched_unlock();
|
|
}
|
|
|
|
int k_mem_pool_alloc(struct k_mem_pool *pool, struct k_mem_block *block,
|
|
size_t size, int32_t timeout)
|
|
{
|
|
char *found_block;
|
|
int offset;
|
|
|
|
_sched_lock();
|
|
/* locate block set to try allocating from */
|
|
offset = compute_block_set_index(pool, size);
|
|
|
|
/* allocate block (fragmenting a larger block, if needed) */
|
|
found_block = get_block_recursive(pool, offset, offset);
|
|
|
|
|
|
if (found_block != NULL) {
|
|
k_sched_unlock();
|
|
block->pool_id = pool;
|
|
block->addr_in_pool = found_block;
|
|
block->data = found_block;
|
|
block->req_size = size;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* no suitable block is currently available,
|
|
* so either wait for one to appear or indicate failure
|
|
*/
|
|
if (likely(timeout != K_NO_WAIT)) {
|
|
int result;
|
|
unsigned int key = irq_lock();
|
|
_sched_unlock_no_reschedule();
|
|
|
|
_current->base.swap_data = (void *)size;
|
|
_pend_current_thread(&pool->wait_q, timeout);
|
|
result = _Swap(key);
|
|
if (result == 0) {
|
|
block->pool_id = pool;
|
|
block->addr_in_pool = _current->base.swap_data;
|
|
block->data = _current->base.swap_data;
|
|
block->req_size = size;
|
|
}
|
|
return result;
|
|
}
|
|
k_sched_unlock();
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void k_mem_pool_free(struct k_mem_block *block)
|
|
{
|
|
int offset;
|
|
struct k_mem_pool *pool = block->pool_id;
|
|
|
|
_sched_lock();
|
|
/* determine block set that block belongs to */
|
|
offset = compute_block_set_index(pool, block->req_size);
|
|
|
|
/* mark the block as unused */
|
|
free_existing_block(block->addr_in_pool, pool, offset);
|
|
|
|
/* reschedule anybody waiting for a block */
|
|
block_waiters_check(pool);
|
|
k_sched_unlock();
|
|
}
|
|
|
|
|
|
/*
|
|
* Heap memory pool support
|
|
*/
|
|
|
|
#if (CONFIG_HEAP_MEM_POOL_SIZE > 0)
|
|
|
|
/*
|
|
* Case 1: Heap is defined using HEAP_MEM_POOL_SIZE configuration option.
|
|
*
|
|
* This module defines the heap memory pool and the _HEAP_MEM_POOL symbol
|
|
* that has the address of the associated memory pool struct.
|
|
*/
|
|
|
|
K_MEM_POOL_DEFINE(_heap_mem_pool, 64, CONFIG_HEAP_MEM_POOL_SIZE, 1, 4);
|
|
#define _HEAP_MEM_POOL (&_heap_mem_pool)
|
|
|
|
#else
|
|
|
|
/*
|
|
* Case 2: Heap is defined using HEAP_SIZE item type in MDEF.
|
|
*
|
|
* Sysgen defines the heap memory pool and the _heap_mem_pool_ptr variable
|
|
* that has the address of the associated memory pool struct. This module
|
|
* defines the _HEAP_MEM_POOL symbol as an alias for _heap_mem_pool_ptr.
|
|
*
|
|
* Note: If the MDEF does not define the heap memory pool k_malloc() will
|
|
* compile successfully, but will trigger a link error if it is used.
|
|
*/
|
|
|
|
extern struct k_mem_pool * const _heap_mem_pool_ptr;
|
|
#define _HEAP_MEM_POOL _heap_mem_pool_ptr
|
|
|
|
#endif /* CONFIG_HEAP_MEM_POOL_SIZE */
|
|
|
|
|
|
void *k_malloc(size_t size)
|
|
{
|
|
struct k_mem_block block;
|
|
|
|
/*
|
|
* get a block large enough to hold an initial (hidden) block
|
|
* descriptor, as well as the space the caller requested
|
|
*/
|
|
size += sizeof(struct k_mem_block);
|
|
if (k_mem_pool_alloc(_HEAP_MEM_POOL, &block, size, K_NO_WAIT) != 0) {
|
|
return NULL;
|
|
}
|
|
|
|
/* save the block descriptor info at the start of the actual block */
|
|
memcpy(block.data, &block, sizeof(struct k_mem_block));
|
|
|
|
/* return address of the user area part of the block to the caller */
|
|
return (char *)block.data + sizeof(struct k_mem_block);
|
|
}
|
|
|
|
|
|
void k_free(void *ptr)
|
|
{
|
|
if (ptr != NULL) {
|
|
/* point to hidden block descriptor at start of block */
|
|
ptr = (char *)ptr - sizeof(struct k_mem_block);
|
|
|
|
/* return block to the heap memory pool */
|
|
k_mem_pool_free(ptr);
|
|
}
|
|
}
|