zephyr/samples/modules/tflite-micro/magic_wand/train/data_split.py

91 lines
3.0 KiB
Python

# Lint as: python3
# coding=utf-8
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Mix and split data.
Mix different people's data together and randomly split them into train,
validation and test. These data would be saved separately under "/data".
It will generate new files with the following structure:
├── data
│   ├── complete_data
│   ├── test
│   ├── train
│   └── valid
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import random
from data_prepare import write_data
# Read data
def read_data(path):
data = []
with open(path, "r") as f:
lines = f.readlines()
for idx, line in enumerate(lines): # pylint: disable=unused-variable
dic = json.loads(line)
data.append(dic)
print("data_length:" + str(len(data)))
return data
def split_data(data, train_ratio, valid_ratio):
"""Splits data into train, validation and test according to ratio."""
train_data = []
valid_data = []
test_data = []
num_dic = {"wing": 0, "ring": 0, "slope": 0, "negative": 0}
for idx, item in enumerate(data): # pylint: disable=unused-variable
for i in num_dic:
if item["gesture"] == i:
num_dic[i] += 1
print(num_dic)
train_num_dic = {}
valid_num_dic = {}
for i in num_dic:
train_num_dic[i] = int(train_ratio * num_dic[i])
valid_num_dic[i] = int(valid_ratio * num_dic[i])
random.seed(30)
random.shuffle(data)
for idx, item in enumerate(data):
for i in num_dic:
if item["gesture"] == i:
if train_num_dic[i] > 0:
train_data.append(item)
train_num_dic[i] -= 1
elif valid_num_dic[i] > 0:
valid_data.append(item)
valid_num_dic[i] -= 1
else:
test_data.append(item)
print("train_length:" + str(len(train_data)))
print("test_length:" + str(len(test_data)))
return train_data, valid_data, test_data
if __name__ == "__main__":
data = read_data("./data/complete_data")
train_data, valid_data, test_data = split_data(data, 0.6, 0.2)
write_data(train_data, "./data/train")
write_data(valid_data, "./data/valid")
write_data(test_data, "./data/test")