91 lines
3.0 KiB
Python
91 lines
3.0 KiB
Python
# Lint as: python3
|
|
# coding=utf-8
|
|
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Mix and split data.
|
|
|
|
Mix different people's data together and randomly split them into train,
|
|
validation and test. These data would be saved separately under "/data".
|
|
It will generate new files with the following structure:
|
|
|
|
├── data
|
|
│ ├── complete_data
|
|
│ ├── test
|
|
│ ├── train
|
|
│ └── valid
|
|
"""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import json
|
|
import random
|
|
from data_prepare import write_data
|
|
|
|
|
|
# Read data
|
|
def read_data(path):
|
|
data = []
|
|
with open(path, "r") as f:
|
|
lines = f.readlines()
|
|
for idx, line in enumerate(lines): # pylint: disable=unused-variable
|
|
dic = json.loads(line)
|
|
data.append(dic)
|
|
print("data_length:" + str(len(data)))
|
|
return data
|
|
|
|
|
|
def split_data(data, train_ratio, valid_ratio):
|
|
"""Splits data into train, validation and test according to ratio."""
|
|
train_data = []
|
|
valid_data = []
|
|
test_data = []
|
|
num_dic = {"wing": 0, "ring": 0, "slope": 0, "negative": 0}
|
|
for idx, item in enumerate(data): # pylint: disable=unused-variable
|
|
for i in num_dic:
|
|
if item["gesture"] == i:
|
|
num_dic[i] += 1
|
|
print(num_dic)
|
|
train_num_dic = {}
|
|
valid_num_dic = {}
|
|
for i in num_dic:
|
|
train_num_dic[i] = int(train_ratio * num_dic[i])
|
|
valid_num_dic[i] = int(valid_ratio * num_dic[i])
|
|
random.seed(30)
|
|
random.shuffle(data)
|
|
for idx, item in enumerate(data):
|
|
for i in num_dic:
|
|
if item["gesture"] == i:
|
|
if train_num_dic[i] > 0:
|
|
train_data.append(item)
|
|
train_num_dic[i] -= 1
|
|
elif valid_num_dic[i] > 0:
|
|
valid_data.append(item)
|
|
valid_num_dic[i] -= 1
|
|
else:
|
|
test_data.append(item)
|
|
print("train_length:" + str(len(train_data)))
|
|
print("test_length:" + str(len(test_data)))
|
|
return train_data, valid_data, test_data
|
|
|
|
|
|
if __name__ == "__main__":
|
|
data = read_data("./data/complete_data")
|
|
train_data, valid_data, test_data = split_data(data, 0.6, 0.2)
|
|
write_data(train_data, "./data/train")
|
|
write_data(valid_data, "./data/valid")
|
|
write_data(test_data, "./data/test")
|