zephyr/drivers/spi/spi_nrfx_spis.c

314 lines
8.1 KiB
C

/*
* Copyright (c) 2018, Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <drivers/spi.h>
#include <nrfx_spis.h>
#define LOG_DOMAIN "spi_nrfx_spis"
#define LOG_LEVEL CONFIG_SPI_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(spi_nrfx_spis);
#include "spi_context.h"
struct spi_nrfx_data {
struct spi_context ctx;
};
struct spi_nrfx_config {
nrfx_spis_t spis;
size_t max_buf_len;
};
static inline struct spi_nrfx_data *get_dev_data(const struct device *dev)
{
return dev->data;
}
static inline const struct spi_nrfx_config *get_dev_config(const struct device *dev)
{
return dev->config;
}
static inline nrf_spis_mode_t get_nrf_spis_mode(uint16_t operation)
{
if (SPI_MODE_GET(operation) & SPI_MODE_CPOL) {
if (SPI_MODE_GET(operation) & SPI_MODE_CPHA) {
return NRF_SPIS_MODE_3;
} else {
return NRF_SPIS_MODE_2;
}
} else {
if (SPI_MODE_GET(operation) & SPI_MODE_CPHA) {
return NRF_SPIS_MODE_1;
} else {
return NRF_SPIS_MODE_0;
}
}
}
static inline nrf_spis_bit_order_t get_nrf_spis_bit_order(uint16_t operation)
{
if (operation & SPI_TRANSFER_LSB) {
return NRF_SPIS_BIT_ORDER_LSB_FIRST;
} else {
return NRF_SPIS_BIT_ORDER_MSB_FIRST;
}
}
static int configure(const struct device *dev,
const struct spi_config *spi_cfg)
{
struct spi_context *ctx = &get_dev_data(dev)->ctx;
if (spi_context_configured(ctx, spi_cfg)) {
/* Already configured. No need to do it again. */
return 0;
}
if (SPI_OP_MODE_GET(spi_cfg->operation) == SPI_OP_MODE_MASTER) {
LOG_ERR("Master mode is not supported on %s",
dev->name);
return -EINVAL;
}
if (spi_cfg->operation & SPI_MODE_LOOP) {
LOG_ERR("Loopback mode is not supported");
return -EINVAL;
}
if ((spi_cfg->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) {
LOG_ERR("Only single line mode is supported");
return -EINVAL;
}
if (SPI_WORD_SIZE_GET(spi_cfg->operation) != 8) {
LOG_ERR("Word sizes other than 8 bits"
" are not supported");
return -EINVAL;
}
if (spi_cfg->cs) {
LOG_ERR("CS control via GPIO is not supported");
return -EINVAL;
}
ctx->config = spi_cfg;
nrf_spis_configure(get_dev_config(dev)->spis.p_reg,
get_nrf_spis_mode(spi_cfg->operation),
get_nrf_spis_bit_order(spi_cfg->operation));
return 0;
}
static void prepare_for_transfer(const struct device *dev)
{
struct spi_nrfx_data *dev_data = get_dev_data(dev);
const struct spi_nrfx_config *dev_config = get_dev_config(dev);
struct spi_context *ctx = &dev_data->ctx;
int status;
size_t buf_len = spi_context_max_continuous_chunk(ctx);
if (buf_len > 0) {
nrfx_err_t result;
if (buf_len > dev_config->max_buf_len) {
buf_len = dev_config->max_buf_len;
}
result = nrfx_spis_buffers_set(
&dev_config->spis,
ctx->tx_buf,
spi_context_tx_buf_on(ctx) ? buf_len : 0,
ctx->rx_buf,
spi_context_rx_buf_on(ctx) ? buf_len : 0);
if (result == NRFX_SUCCESS) {
return;
}
/* Cannot prepare for transfer. */
status = -EIO;
} else {
/* Zero-length buffer provided. */
status = 0;
}
spi_context_complete(ctx, status);
}
static int transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
struct k_poll_signal *signal)
{
struct spi_nrfx_data *dev_data = get_dev_data(dev);
int error;
spi_context_lock(&dev_data->ctx, asynchronous, signal);
error = configure(dev, spi_cfg);
if (error != 0) {
/* Invalid configuration. */
} else if ((tx_bufs && tx_bufs->count > 1) ||
(rx_bufs && rx_bufs->count > 1)) {
LOG_ERR("Scattered buffers are not supported");
error = -ENOTSUP;
} else if (tx_bufs && tx_bufs->buffers[0].len &&
!nrfx_is_in_ram(tx_bufs->buffers[0].buf)) {
LOG_ERR("Only buffers located in RAM are supported");
error = -ENOTSUP;
} else {
spi_context_buffers_setup(&dev_data->ctx, tx_bufs, rx_bufs, 1);
prepare_for_transfer(dev);
error = spi_context_wait_for_completion(&dev_data->ctx);
}
spi_context_release(&dev_data->ctx, error);
return error;
}
static int spi_nrfx_transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_nrfx_transceive_async(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
struct k_poll_signal *async)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, async);
}
#endif /* CONFIG_SPI_ASYNC */
static int spi_nrfx_release(const struct device *dev,
const struct spi_config *spi_cfg)
{
struct spi_nrfx_data *dev_data = get_dev_data(dev);
if (!spi_context_configured(&dev_data->ctx, spi_cfg)) {
return -EINVAL;
}
spi_context_unlock_unconditionally(&dev_data->ctx);
return 0;
}
static const struct spi_driver_api spi_nrfx_driver_api = {
.transceive = spi_nrfx_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_nrfx_transceive_async,
#endif
.release = spi_nrfx_release,
};
static void event_handler(const nrfx_spis_evt_t *p_event, void *p_context)
{
struct spi_nrfx_data *dev_data = p_context;
if (p_event->evt_type == NRFX_SPIS_XFER_DONE) {
spi_context_complete(&dev_data->ctx, p_event->rx_amount);
}
}
static int init_spis(const struct device *dev,
const nrfx_spis_config_t *config)
{
struct spi_nrfx_data *dev_data = get_dev_data(dev);
/* This sets only default values of frequency, mode and bit order.
* The proper ones are set in configure() when a transfer is started.
*/
nrfx_err_t result = nrfx_spis_init(&get_dev_config(dev)->spis,
config,
event_handler,
dev_data);
if (result != NRFX_SUCCESS) {
LOG_ERR("Failed to initialize device: %s", dev->name);
return -EBUSY;
}
spi_context_unlock_unconditionally(&dev_data->ctx);
return 0;
}
/*
* Current factors requiring use of DT_NODELABEL:
*
* - NRFX_SPIS_INSTANCE() requires an SoC instance number
* - soc-instance-numbered kconfig enables
* - ORC is a SoC-instance-numbered kconfig option instead of a DT property
*/
#define SPIS(idx) DT_NODELABEL(spi##idx)
#define SPIS_PROP(idx, prop) DT_PROP(SPIS(idx), prop)
#define SPI_NRFX_SPIS_DEVICE(idx) \
static int spi_##idx##_init(const struct device *dev) \
{ \
IRQ_CONNECT(DT_IRQN(SPIS(idx)), DT_IRQ(SPIS(idx), priority), \
nrfx_isr, nrfx_spis_##idx##_irq_handler, 0); \
const nrfx_spis_config_t config = { \
.sck_pin = SPIS_PROP(idx, sck_pin), \
.mosi_pin = SPIS_PROP(idx, mosi_pin), \
.miso_pin = SPIS_PROP(idx, miso_pin), \
.csn_pin = SPIS_PROP(idx, csn_pin), \
.mode = NRF_SPIS_MODE_0, \
.bit_order = NRF_SPIS_BIT_ORDER_MSB_FIRST, \
.csn_pullup = NRF_GPIO_PIN_NOPULL, \
.miso_drive = NRF_GPIO_PIN_S0S1, \
.orc = CONFIG_SPI_##idx##_NRF_ORC, \
.def = SPIS_PROP(idx, def_char), \
}; \
return init_spis(dev, &config); \
} \
static struct spi_nrfx_data spi_##idx##_data = { \
SPI_CONTEXT_INIT_LOCK(spi_##idx##_data, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_##idx##_data, ctx), \
}; \
static const struct spi_nrfx_config spi_##idx##z_config = { \
.spis = NRFX_SPIS_INSTANCE(idx), \
.max_buf_len = (1 << SPIS##idx##_EASYDMA_MAXCNT_SIZE) - 1, \
}; \
DEVICE_AND_API_INIT(spi_##idx, \
DT_LABEL(SPIS(idx)), \
spi_##idx##_init, \
&spi_##idx##_data, \
&spi_##idx##z_config, \
POST_KERNEL, \
CONFIG_SPI_INIT_PRIORITY, \
&spi_nrfx_driver_api)
#ifdef CONFIG_SPI_0_NRF_SPIS
SPI_NRFX_SPIS_DEVICE(0);
#endif
#ifdef CONFIG_SPI_1_NRF_SPIS
SPI_NRFX_SPIS_DEVICE(1);
#endif
#ifdef CONFIG_SPI_2_NRF_SPIS
SPI_NRFX_SPIS_DEVICE(2);
#endif
#ifdef CONFIG_SPI_3_NRF_SPIS
SPI_NRFX_SPIS_DEVICE(3);
#endif