zephyr/drivers/timer/arcv2_timer0.c

377 lines
8.1 KiB
C

/*
* Copyright (c) 2014-2015 Wind River Systems, Inc.
* Copyright (c) 2018 Synopsys Inc, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <drivers/timer/system_timer.h>
#include <sys_clock.h>
#include <spinlock.h>
#include <arch/arc/v2/aux_regs.h>
#include <soc.h>
/*
* note: This implementation assumes Timer0 is present. Be sure
* to build the ARC CPU with Timer0.
*
* If secureshield is present and secure firmware is configured,
* use secure Timer 0
*/
#ifdef CONFIG_ARC_SECURE_FIRMWARE
#undef _ARC_V2_TMR0_COUNT
#undef _ARC_V2_TMR0_CONTROL
#undef _ARC_V2_TMR0_LIMIT
#undef IRQ_TIMER0
#define _ARC_V2_TMR0_COUNT _ARC_V2_S_TMR0_COUNT
#define _ARC_V2_TMR0_CONTROL _ARC_V2_S_TMR0_CONTROL
#define _ARC_V2_TMR0_LIMIT _ARC_V2_S_TMR0_LIMIT
#define IRQ_TIMER0 IRQ_SEC_TIMER0
#endif
#define _ARC_V2_TMR_CTRL_IE 0x1 /* interrupt enable */
#define _ARC_V2_TMR_CTRL_NH 0x2 /* count only while not halted */
#define _ARC_V2_TMR_CTRL_W 0x4 /* watchdog mode enable */
#define _ARC_V2_TMR_CTRL_IP 0x8 /* interrupt pending flag */
/* Minimum cycles in the future to try to program. */
#define MIN_DELAY 512
#define COUNTER_MAX 0xffffffff
#define TIMER_STOPPED 0x0
#define CYC_PER_TICK (sys_clock_hw_cycles_per_sec() \
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC)
#define MAX_TICKS ((COUNTER_MAX / CYC_PER_TICK) - 1)
#define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK)
#define TICKLESS (IS_ENABLED(CONFIG_TICKLESS_KERNEL))
static struct k_spinlock lock;
#ifdef CONFIG_SMP
volatile static u64_t last_time;
volatile static u64_t start_time;
#else
static u32_t last_load;
static u32_t cycle_count;
#endif
/**
*
* @brief Get contents of Timer0 count register
*
* @return Current Timer0 count
*/
static ALWAYS_INLINE u32_t timer0_count_register_get(void)
{
return z_arc_v2_aux_reg_read(_ARC_V2_TMR0_COUNT);
}
/**
*
* @brief Set Timer0 count register to the specified value
*
* @return N/A
*/
static ALWAYS_INLINE void timer0_count_register_set(u32_t value)
{
z_arc_v2_aux_reg_write(_ARC_V2_TMR0_COUNT, value);
}
/**
*
* @brief Get contents of Timer0 control register
*
* @return N/A
*/
static ALWAYS_INLINE u32_t timer0_control_register_get(void)
{
return z_arc_v2_aux_reg_read(_ARC_V2_TMR0_CONTROL);
}
/**
*
* @brief Set Timer0 control register to the specified value
*
* @return N/A
*/
static ALWAYS_INLINE void timer0_control_register_set(u32_t value)
{
z_arc_v2_aux_reg_write(_ARC_V2_TMR0_CONTROL, value);
}
/**
*
* @brief Get contents of Timer0 limit register
*
* @return N/A
*/
static ALWAYS_INLINE u32_t timer0_limit_register_get(void)
{
return z_arc_v2_aux_reg_read(_ARC_V2_TMR0_LIMIT);
}
/**
*
* @brief Set Timer0 limit register to the specified value
*
* @return N/A
*/
static ALWAYS_INLINE void timer0_limit_register_set(u32_t count)
{
z_arc_v2_aux_reg_write(_ARC_V2_TMR0_LIMIT, count);
}
#ifndef CONFIG_SMP
static u32_t elapsed(void)
{
u32_t val, ov, ctrl;
do {
val = timer0_count_register_get();
ctrl = timer0_control_register_get();
} while (timer0_count_register_get() < val);
ov = (ctrl & _ARC_V2_TMR_CTRL_IP) ? last_load : 0;
return val + ov;
}
#endif
/**
*
* @brief System clock periodic tick handler
*
* This routine handles the system clock tick interrupt. It always
* announces one tick when TICKLESS is not enabled, or multiple ticks
* when TICKLESS is enabled.
*
* @return N/A
*/
static void timer_int_handler(void *unused)
{
ARG_UNUSED(unused);
u32_t dticks;
/* clear the interrupt by writing 0 to IP bit of the control register */
timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE);
#ifdef CONFIG_SMP
u64_t curr_time;
k_spinlock_key_t key;
key = k_spin_lock(&lock);
/* gfrc is the wall clock */
curr_time = z_arc_connect_gfrc_read();
dticks = (curr_time - last_time) / CYC_PER_TICK;
last_time = curr_time;
k_spin_unlock(&lock, key);
z_clock_announce(dticks);
#else
cycle_count += last_load;
dticks = last_load / CYC_PER_TICK;
z_clock_announce(TICKLESS ? dticks : 1);
#endif
}
/**
*
* @brief Initialize and enable the system clock
*
* This routine is used to program the ARCv2 timer to deliver interrupts at the
* rate specified via the CYC_PER_TICK.
*
* @return 0
*/
int z_clock_driver_init(struct device *device)
{
ARG_UNUSED(device);
/* ensure that the timer will not generate interrupts */
timer0_control_register_set(0);
#ifdef CONFIG_SMP
IRQ_CONNECT(IRQ_TIMER0, CONFIG_ARCV2_TIMER_IRQ_PRIORITY,
timer_int_handler, NULL, 0);
timer0_limit_register_set(CYC_PER_TICK - 1);
last_time = z_arc_connect_gfrc_read();
start_time = last_time;
#else
last_load = CYC_PER_TICK;
IRQ_CONNECT(IRQ_TIMER0, CONFIG_ARCV2_TIMER_IRQ_PRIORITY,
timer_int_handler, NULL, 0);
timer0_limit_register_set(last_load - 1);
#ifdef CONFIG_BOOT_TIME_MEASUREMENT
cycle_count = timer0_count_register_get();
#endif
#endif
timer0_count_register_set(0);
timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE);
/* everything has been configured: safe to enable the interrupt */
irq_enable(IRQ_TIMER0);
return 0;
}
void z_clock_set_timeout(s32_t ticks, bool idle)
{
/* If the kernel allows us to miss tick announcements in idle,
* then shut off the counter. (Note: we can assume if idle==true
* that interrupts are already disabled)
*/
#ifdef CONFIG_SMP
if (IS_ENABLED(CONFIG_TICKLESS_IDLE) && idle && ticks == K_FOREVER) {
timer0_control_register_set(0);
timer0_count_register_set(0);
timer0_limit_register_set(0);
return;
}
#if defined(CONFIG_TICKLESS_KERNEL)
u32_t delay;
u32_t key;
ticks = MIN(MAX_TICKS, MAX(ticks - 1, 0));
/* Desired delay in the future */
delay = (ticks == 0) ? CYC_PER_TICK : ticks * CYC_PER_TICK;
key = z_arch_irq_lock();
timer0_limit_register_set(delay - 1);
timer0_count_register_set(0);
timer0_control_register_set(_ARC_V2_TMR_CTRL_NH |
_ARC_V2_TMR_CTRL_IE);
z_arch_irq_unlock(key);
#endif
#else
if (IS_ENABLED(CONFIG_TICKLESS_IDLE) && idle && ticks == K_FOREVER) {
timer0_control_register_set(0);
timer0_count_register_set(0);
timer0_limit_register_set(0);
last_load = TIMER_STOPPED;
return;
}
#if defined(CONFIG_TICKLESS_KERNEL)
u32_t delay;
ticks = MIN(MAX_TICKS, MAX(ticks - 1, 0));
/* Desired delay in the future */
delay = (ticks == 0) ? MIN_DELAY : ticks * CYC_PER_TICK;
k_spinlock_key_t key = k_spin_lock(&lock);
delay += elapsed();
/* Round delay up to next tick boundary */
delay = ((delay + CYC_PER_TICK - 1) / CYC_PER_TICK) * CYC_PER_TICK;
if (last_load != delay) {
if (timer0_control_register_get() & _ARC_V2_TMR_CTRL_IP) {
delay -= last_load;
}
timer0_limit_register_set(delay - 1);
last_load = delay;
timer0_control_register_set(_ARC_V2_TMR_CTRL_NH |
_ARC_V2_TMR_CTRL_IE);
}
k_spin_unlock(&lock, key);
#endif
#endif
}
u32_t z_clock_elapsed(void)
{
if (!TICKLESS) {
return 0;
}
u32_t cyc;
k_spinlock_key_t key = k_spin_lock(&lock);
#ifdef CONFIG_SMP
cyc = (z_arc_connect_gfrc_read() - last_time) / CYC_PER_TICK;
#else
cyc = elapsed() / CYC_PER_TICK;
#endif
k_spin_unlock(&lock, key);
return cyc;
}
u32_t z_timer_cycle_get_32(void)
{
#ifdef CONFIG_SMP
return z_arc_connect_gfrc_read() - start_time;
#else
k_spinlock_key_t key = k_spin_lock(&lock);
u32_t ret = elapsed() + cycle_count;
k_spin_unlock(&lock, key);
return ret;
#endif
}
/**
*
* @brief Stop announcing ticks into the kernel
*
* This routine disables timer interrupt generation and delivery.
* Note that the timer's counting cannot be stopped by software.
*
* @return N/A
*/
void sys_clock_disable(void)
{
unsigned int key; /* interrupt lock level */
u32_t control; /* timer control register value */
key = irq_lock();
/* disable interrupt generation */
control = timer0_control_register_get();
timer0_control_register_set(control & ~_ARC_V2_TMR_CTRL_IE);
irq_unlock(key);
/* disable interrupt in the interrupt controller */
irq_disable(IRQ_TIMER0);
}
#ifdef CONFIG_SMP
void smp_timer_init(void)
{
/* set the initial status of timer0 of each slave core
*/
timer0_control_register_set(0);
timer0_count_register_set(0);
timer0_limit_register_set(0);
z_irq_priority_set(IRQ_TIMER0, CONFIG_ARCV2_TIMER_IRQ_PRIORITY, 0);
irq_enable(IRQ_TIMER0);
}
#endif