zephyr/drivers/watchdog/wdt_nxp_fs26.c

843 lines
23 KiB
C

/*
* Copyright 2023 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_fs26_wdog
#include <zephyr/kernel.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/watchdog.h>
#include <zephyr/sys/byteorder.h>
#define LOG_LEVEL CONFIG_WDT_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(wdt_nxp_fs26);
#include "wdt_nxp_fs26.h"
#if defined(CONFIG_BIG_ENDIAN)
#define SWAP_ENDIANNESS
#endif
#define FS26_CRC_TABLE_SIZE 256U
#define FS26_CRC_INIT 0xff
#define FS26_FS_WD_TOKEN_DEFAULT 0x5ab2
#define FS26_INIT_FS_TIMEOUT_MS 1000U
/* Helper macros to set register values from Kconfig options */
#define WD_ERR_LIMIT(x) _CONCAT(WD_ERR_LIMIT_, x)
#define WD_RFR_LIMIT(x) _CONCAT(WD_RFR_LIMIT_, x)
#define WDW_PERIOD(x) _CONCAT(_CONCAT(WDW_PERIOD_, x), MS)
#define BAD_WD_REFRESH_ERROR_STRING(x) \
((((x) & BAD_WD_DATA) ? "error in the data" : \
(((x) & BAD_WD_TIMING) ? "error in the timing (window)" \
: "unknown error")))
enum fs26_wd_type {
FS26_WD_SIMPLE,
FS26_WD_CHALLENGER
};
struct fs26_spi_rx_frame {
union {
struct {
uint8_t m_aval : 1;
uint8_t fs_en : 1;
uint8_t fs_g : 1;
uint8_t com_g : 1;
uint8_t wio_g : 1;
uint8_t vsup_g : 1;
uint8_t reg_g : 1;
uint8_t tsd_g : 1;
};
uint8_t raw;
} status;
uint16_t data;
};
struct fs26_spi_tx_frame {
bool write;
uint8_t addr;
uint16_t data;
};
struct wdt_nxp_fs26_config {
struct spi_dt_spec spi;
enum fs26_wd_type wd_type;
struct gpio_dt_spec int_gpio;
};
struct wdt_nxp_fs26_data {
wdt_callback_t callback;
uint16_t token; /* local copy of the watchdog token */
bool timeout_installed;
uint8_t window_period;
uint8_t window_duty_cycle;
uint8_t fs_reaction;
struct gpio_callback int_gpio_cb;
struct k_sem int_sem;
struct k_thread int_thread;
K_KERNEL_STACK_MEMBER(int_thread_stack, CONFIG_WDT_NXP_FS26_INT_THREAD_STACK_SIZE);
};
/*
* Allowed values for watchdog period and duty cycle (CLOSED window).
* The index is the value to write to the register. Keep values in ascending order.
*/
static const uint32_t fs26_period_values[] = {
0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 64, 128, 256, 512, 1024
};
static const double fs26_dc_closed_values[] = {
0.3125, 0.375, 0.5, 0.625, 0.6875, 0.75, 0.8125
};
/* CRC lookup table */
static const uint8_t FS26_CRC_TABLE[FS26_CRC_TABLE_SIZE] = {
0x00u, 0x1du, 0x3au, 0x27u, 0x74u, 0x69u, 0x4eu, 0x53u, 0xe8u,
0xf5u, 0xd2u, 0xcfu, 0x9cu, 0x81u, 0xa6u, 0xbbu, 0xcdu, 0xd0u,
0xf7u, 0xeau, 0xb9u, 0xa4u, 0x83u, 0x9eu, 0x25u, 0x38u, 0x1fu,
0x02u, 0x51u, 0x4cu, 0x6bu, 0x76u, 0x87u, 0x9au, 0xbdu, 0xa0u,
0xf3u, 0xeeu, 0xc9u, 0xd4u, 0x6fu, 0x72u, 0x55u, 0x48u, 0x1bu,
0x06u, 0x21u, 0x3cu, 0x4au, 0x57u, 0x70u, 0x6du, 0x3eu, 0x23u,
0x04u, 0x19u, 0xa2u, 0xbfu, 0x98u, 0x85u, 0xd6u, 0xcbu, 0xecu,
0xf1u, 0x13u, 0x0eu, 0x29u, 0x34u, 0x67u, 0x7au, 0x5du, 0x40u,
0xfbu, 0xe6u, 0xc1u, 0xdcu, 0x8fu, 0x92u, 0xb5u, 0xa8u, 0xdeu,
0xc3u, 0xe4u, 0xf9u, 0xaau, 0xb7u, 0x90u, 0x8du, 0x36u, 0x2bu,
0x0cu, 0x11u, 0x42u, 0x5fu, 0x78u, 0x65u, 0x94u, 0x89u, 0xaeu,
0xb3u, 0xe0u, 0xfdu, 0xdau, 0xc7u, 0x7cu, 0x61u, 0x46u, 0x5bu,
0x08u, 0x15u, 0x32u, 0x2fu, 0x59u, 0x44u, 0x63u, 0x7eu, 0x2du,
0x30u, 0x17u, 0x0au, 0xb1u, 0xacu, 0x8bu, 0x96u, 0xc5u, 0xd8u,
0xffu, 0xe2u, 0x26u, 0x3bu, 0x1cu, 0x01u, 0x52u, 0x4fu, 0x68u,
0x75u, 0xceu, 0xd3u, 0xf4u, 0xe9u, 0xbau, 0xa7u, 0x80u, 0x9du,
0xebu, 0xf6u, 0xd1u, 0xccu, 0x9fu, 0x82u, 0xa5u, 0xb8u, 0x03u,
0x1eu, 0x39u, 0x24u, 0x77u, 0x6au, 0x4du, 0x50u, 0xa1u, 0xbcu,
0x9bu, 0x86u, 0xd5u, 0xc8u, 0xefu, 0xf2u, 0x49u, 0x54u, 0x73u,
0x6eu, 0x3du, 0x20u, 0x07u, 0x1au, 0x6cu, 0x71u, 0x56u, 0x4bu,
0x18u, 0x05u, 0x22u, 0x3fu, 0x84u, 0x99u, 0xbeu, 0xa3u, 0xf0u,
0xedu, 0xcau, 0xd7u, 0x35u, 0x28u, 0x0fu, 0x12u, 0x41u, 0x5cu,
0x7bu, 0x66u, 0xddu, 0xc0u, 0xe7u, 0xfau, 0xa9u, 0xb4u, 0x93u,
0x8eu, 0xf8u, 0xe5u, 0xc2u, 0xdfu, 0x8cu, 0x91u, 0xb6u, 0xabu,
0x10u, 0x0du, 0x2au, 0x37u, 0x64u, 0x79u, 0x5eu, 0x43u, 0xb2u,
0xafu, 0x88u, 0x95u, 0xc6u, 0xdbu, 0xfcu, 0xe1u, 0x5au, 0x47u,
0x60u, 0x7du, 0x2eu, 0x33u, 0x14u, 0x09u, 0x7fu, 0x62u, 0x45u,
0x58u, 0x0bu, 0x16u, 0x31u, 0x2cu, 0x97u, 0x8au, 0xadu, 0xb0u,
0xe3u, 0xfeu, 0xd9u, 0xc4u
};
static uint8_t fs26_calcrc(const uint8_t *data, size_t size)
{
uint8_t crc;
uint8_t tableidx;
uint8_t i;
/* Set CRC token value */
crc = FS26_CRC_INIT;
for (i = size; i > 0; i--) {
tableidx = crc ^ data[i];
crc = FS26_CRC_TABLE[tableidx];
}
return crc;
}
static int fs26_spi_transceive(const struct spi_dt_spec *spi,
struct fs26_spi_tx_frame *tx_frame,
struct fs26_spi_rx_frame *rx_frame)
{
uint32_t tx_buf;
uint32_t rx_buf;
uint8_t crc;
int retval;
struct spi_buf spi_tx_buf = {
.buf = &tx_buf,
.len = sizeof(tx_buf)
};
struct spi_buf spi_rx_buf = {
.buf = &rx_buf,
.len = sizeof(rx_buf)
};
struct spi_buf_set spi_tx_set = {
.buffers = &spi_tx_buf,
.count = 1U
};
struct spi_buf_set spi_rx_set = {
.buffers = &spi_rx_buf,
.count = 1U
};
/* Create frame to Tx, always for Fail Safe */
tx_buf = (uint32_t)(FS26_SET_REG_ADDR(tx_frame->addr)
| FS26_SET_DATA(tx_frame->data)
| (tx_frame->write ? FS26_RW : 0));
crc = fs26_calcrc((uint8_t *)&tx_buf, sizeof(tx_buf) - 1);
tx_buf |= (uint32_t)FS26_SET_CRC(crc);
#if defined(SWAP_ENDIANNESS)
tx_buf = __builtin_bswap32(tx_buf);
#endif
retval = spi_transceive_dt(spi, &spi_tx_set, &spi_rx_set);
if (retval) {
goto error;
}
#if defined(SWAP_ENDIANNESS)
rx_buf = __builtin_bswap32(rx_buf);
#endif
/* Verify CRC of Rx frame */
crc = fs26_calcrc((uint8_t *)&rx_buf, sizeof(rx_buf) - 1);
if (crc != ((uint8_t)FS26_GET_CRC(rx_buf))) {
LOG_ERR("Rx invalid CRC");
retval = -EIO;
goto error;
}
if (rx_frame) {
rx_frame->status.raw = (uint8_t)FS26_GET_DEV_STATUS(rx_buf);
rx_frame->data = (uint16_t)FS26_GET_DATA(rx_buf);
}
error:
return retval;
}
/**
* @brief Get value of register with address @p addr
*
* @param spi SPI specs for interacting with the device
* @param addr Register address
* @param rx_frame SPI frame containing read data and device status flags
*
* @return 0 on success, error code otherwise
*/
static int fs26_getreg(const struct spi_dt_spec *spi, uint8_t addr,
struct fs26_spi_rx_frame *rx_frame)
{
struct fs26_spi_tx_frame tx_frame = {
.addr = addr,
.write = 0,
.data = 0
};
return fs26_spi_transceive(spi, &tx_frame, rx_frame);
}
/**
* @brief Set @p regval value in register with address @p addr
*
* @param spi SPI specs for interacting with the device
* @param addr Register address
* @param regval Register value to set
*
* @return 0 on success, error code otherwise
*/
static int fs26_setreg(const struct spi_dt_spec *spi, uint8_t addr, uint16_t regval)
{
struct fs26_spi_tx_frame tx_frame = {
.addr = addr,
.write = true,
.data = regval
};
return fs26_spi_transceive(spi, &tx_frame, NULL);
}
/**
* @brief Calculate watchdog answer based on received token
*
* @return answer value to write to FS_WD_ANSWER
*/
static inline uint16_t fs26_wd_compute_answer(uint16_t token)
{
uint32_t tmp = token;
tmp *= 4U;
tmp += 6U;
tmp -= 4U;
tmp = ~tmp;
tmp /= 4U;
return (uint16_t)tmp;
}
/**
* @brief Refresh the watchdog and verify the refresh was good.
*
* @return 0 on success, error code otherwise
*/
static int fs26_wd_refresh(const struct device *dev)
{
const struct wdt_nxp_fs26_config *config = dev->config;
struct wdt_nxp_fs26_data *data = dev->data;
int retval = 0;
int key;
uint16_t answer;
struct fs26_spi_rx_frame rx_frame;
if (config->wd_type == FS26_WD_SIMPLE) {
if (fs26_setreg(&config->spi, FS26_FS_WD_ANSWER, data->token) == 0) {
LOG_ERR("Failed to write answer");
retval = -EIO;
}
} else if (config->wd_type == FS26_WD_CHALLENGER) {
key = irq_lock();
/* Read challenge token generated by the device */
if (fs26_getreg(&config->spi, FS26_FS_WD_TOKEN, &rx_frame)) {
LOG_ERR("Failed to obtain watchdog token");
retval = -EIO;
} else {
data->token = rx_frame.data;
LOG_DBG("Watchdog token is %x", data->token);
answer = fs26_wd_compute_answer(data->token);
if (fs26_setreg(&config->spi, FS26_FS_WD_ANSWER, answer)) {
LOG_ERR("Failed to write answer");
retval = -EIO;
}
}
irq_unlock(key);
} else {
retval = -EINVAL;
}
/* Check if watchdog refresh was successful */
if (!retval) {
if (!fs26_getreg(&config->spi, FS26_FS_GRL_FLAGS, &rx_frame)) {
if ((rx_frame.data & FS_WD_G_MASK) == FS_WD_G) {
if (!fs26_getreg(&config->spi, FS26_FS_DIAG_SAFETY1, &rx_frame)) {
LOG_ERR("Bad watchdog refresh, %s",
BAD_WD_REFRESH_ERROR_STRING(rx_frame.data));
}
retval = -EIO;
} else {
LOG_DBG("Refreshed the watchdog");
}
}
}
return retval;
}
/**
* @brief Wait for state machine to be at in INIT_FS state
*
* @return 0 on success, -ETIMEDOUT if timedout
*/
static int fs26_poll_for_init_fs_state(const struct device *dev)
{
const struct wdt_nxp_fs26_config *config = dev->config;
struct fs26_spi_rx_frame rx_frame;
uint32_t regval = 0;
int64_t timeout;
int64_t now;
timeout = k_uptime_get() + FS26_INIT_FS_TIMEOUT_MS;
do {
if (!fs26_getreg(&config->spi, FS26_FS_STATES, &rx_frame)) {
regval = rx_frame.data;
}
k_sleep(K_MSEC(1));
now = k_uptime_get();
} while ((now < timeout) && (regval & FS_STATES_MASK) != FS_STATES_INIT_FS);
if (now >= timeout) {
LOG_ERR("Timedout waiting for INIT_FS state");
return -ETIMEDOUT;
}
return 0;
}
/**
* @brief Go to INIT_FS state from any FS state after INIT_FS
*
* After INIT_FS closure, it is possible to come back to INIT_FS with the
* GOTO_INIT bit in FS_SAFE_IOS_1 register from any FS state after INIT_FS.
*
* @return 0 on success, error code otherwise
*/
static int fs26_goto_init_fs_state(const struct device *dev)
{
const struct wdt_nxp_fs26_config *config = dev->config;
struct fs26_spi_rx_frame rx_frame;
uint32_t current_state;
int retval = -EIO;
if (!fs26_getreg(&config->spi, FS26_FS_STATES, &rx_frame)) {
current_state = rx_frame.data & FS_STATES_MASK;
if (current_state < FS_STATES_INIT_FS) {
LOG_ERR("Cannot go to INIT_FS from current state %x", current_state);
retval = -EIO;
} else if (current_state == FS_STATES_INIT_FS) {
retval = 0;
} else {
fs26_setreg(&config->spi, FS26_FS_SAFE_IOS_1, (uint32_t)FS_GOTO_INIT);
retval = fs26_poll_for_init_fs_state(dev);
}
}
return retval;
}
/**
* @brief Close INIT_FS phase with a (good) watchdog refresh.
*
* @return 0 on success, error code otherwise
*/
static inline int fs26_exit_init_fs_state(const struct device *dev)
{
return fs26_wd_refresh(dev);
}
static int wdt_nxp_fs26_feed(const struct device *dev, int channel_id)
{
struct wdt_nxp_fs26_data *data = dev->data;
if (channel_id != 0) {
LOG_ERR("Invalid channel ID");
return -EINVAL;
}
if (!data->timeout_installed) {
LOG_ERR("No timeout installed");
return -EINVAL;
}
return fs26_wd_refresh(dev);
}
static int wdt_nxp_fs26_setup(const struct device *dev, uint8_t options)
{
const struct wdt_nxp_fs26_config *config = dev->config;
struct wdt_nxp_fs26_data *data = dev->data;
uint32_t regval;
if (!data->timeout_installed) {
LOG_ERR("No timeout installed");
return -EINVAL;
}
if ((options & WDT_OPT_PAUSE_IN_SLEEP) || (options & WDT_OPT_PAUSE_HALTED_BY_DBG)) {
return -ENOTSUP;
}
/*
* Apply fail-safe reaction configuration on RSTB and/or the safety output(s),
* configurable during the initialization phase.
*/
if (fs26_goto_init_fs_state(dev)) {
LOG_ERR("Failed to go to INIT_FS");
return -EIO;
}
regval = WD_ERR_LIMIT(CONFIG_WDT_NXP_FS26_ERROR_COUNTER_LIMIT)
| WD_RFR_LIMIT(CONFIG_WDT_NXP_FS26_REFRESH_COUNTER_LIMIT)
| ((data->fs_reaction << WD_FS_REACTION_SHIFT) & WD_FS_REACTION_MASK);
fs26_setreg(&config->spi, FS26_FS_I_WD_CFG, regval);
fs26_setreg(&config->spi, FS26_FS_I_NOT_WD_CFG, ~regval);
/* Apply watchdog window configuration, configurable during any FS state */
regval = ((data->window_period << WDW_PERIOD_SHIFT) & WDW_PERIOD_MASK)
| ((data->window_duty_cycle << WDW_DC_SHIFT) & WDW_DC_MASK)
| WDW_RECOVERY_DISABLE;
fs26_setreg(&config->spi, FS26_FS_WDW_DURATION, regval);
fs26_setreg(&config->spi, FS26_FS_NOT_WDW_DURATION, ~regval);
/*
* The new watchdog window is effective after the next watchdog refresh,
* so feed the watchdog once to make it effective after exiting this
* function. Also it's required to close init phase.
*/
if (fs26_exit_init_fs_state(dev)) {
LOG_ERR("Failed to close INIT_FS");
return -EIO;
}
return 0;
}
static int wdt_nxp_fs26_install_timeout(const struct device *dev,
const struct wdt_timeout_cfg *cfg)
{
struct wdt_nxp_fs26_data *data = dev->data;
uint32_t window_min;
uint8_t i;
if (data->timeout_installed) {
LOG_ERR("No more timeouts can be installed");
return -ENOMEM;
}
if ((cfg->window.max == 0) || (cfg->window.max > 1024)
|| (cfg->window.max <= cfg->window.min)) {
LOG_ERR("Invalid timeout value");
return -EINVAL;
}
/* Find nearest period value (rounded up) */
for (i = 0; i < ARRAY_SIZE(fs26_period_values); i++) {
if (fs26_period_values[i] >= cfg->window.max) {
break;
}
}
data->window_period = i;
LOG_DBG("window.max requested %d ms, using %d ms",
cfg->window.max, fs26_period_values[data->window_period]);
/*
* Find nearest duty cycle value based on new period, that results in a
* window's minimum near the requested (rounded up)
*/
for (i = 0; i < ARRAY_SIZE(fs26_dc_closed_values); i++) {
window_min = (uint32_t)(fs26_dc_closed_values[i]
* fs26_period_values[data->window_period]);
if (window_min >= cfg->window.min) {
break;
}
}
if (i >= ARRAY_SIZE(fs26_dc_closed_values)) {
LOG_ERR("Watchdog opened window too small");
return -EINVAL;
}
data->window_duty_cycle = i;
LOG_DBG("window.min requested %d ms, using %d ms (%.2f%%)",
cfg->window.min, window_min,
fs26_dc_closed_values[data->window_duty_cycle] * 100);
/* Fail-safe reaction configuration */
switch (cfg->flags) {
case WDT_FLAG_RESET_SOC:
__fallthrough;
case WDT_FLAG_RESET_CPU_CORE:
data->fs_reaction = WD_FS_REACTION_RSTB_FS0B >> WD_FS_REACTION_SHIFT;
LOG_DBG("Configuring reset mode");
break;
case WDT_FLAG_RESET_NONE:
data->fs_reaction = WD_FS_REACTION_NO_ACTION >> WD_FS_REACTION_SHIFT;
LOG_DBG("Configuring non-reset mode");
break;
default:
LOG_ERR("Unsupported watchdog configuration flag");
return -EINVAL;
}
data->callback = cfg->callback;
data->timeout_installed = true;
/* Always return channel ID equal to 0 */
return 0;
}
static int wdt_nxp_fs26_disable(const struct device *dev)
{
const struct wdt_nxp_fs26_config *config = dev->config;
struct wdt_nxp_fs26_data *data = dev->data;
struct fs26_spi_rx_frame rx_frame;
uint32_t regval;
if (fs26_getreg(&config->spi, FS26_FS_WDW_DURATION, &rx_frame)) {
return -EIO;
}
if ((rx_frame.data & WDW_PERIOD_MASK) == WDW_PERIOD_DISABLE) {
LOG_ERR("Watchdog already disabled");
return -EFAULT;
}
/* The watchdog window can be disabled only during the initialization phase */
if (fs26_goto_init_fs_state(dev)) {
LOG_ERR("Failed to go to INIT_FS");
return -EIO;
}
regval = WDW_PERIOD_DISABLE | WDW_RECOVERY_DISABLE;
fs26_setreg(&config->spi, FS26_FS_WDW_DURATION, regval);
fs26_setreg(&config->spi, FS26_FS_NOT_WDW_DURATION, ~regval);
/* The watchdog disabling is effective when the initialization phase is closed */
if (fs26_exit_init_fs_state(dev)) {
LOG_ERR("Failed to close INIT_FS");
return -EIO;
}
LOG_DBG("Watchdog disabled");
data->timeout_installed = false;
return 0;
}
static void wdt_nxp_fs26_int_thread(void *p1, void *p2, void *p3)
{
ARG_UNUSED(p2);
ARG_UNUSED(p3);
const struct device *dev = p1;
const struct wdt_nxp_fs26_config *config = dev->config;
struct wdt_nxp_fs26_data *data = dev->data;
struct fs26_spi_rx_frame rx_frame;
uint32_t regval;
while (1) {
k_sem_take(&data->int_sem, K_FOREVER);
if ((!fs26_getreg(&config->spi, FS26_FS_GRL_FLAGS, &rx_frame))
&& ((rx_frame.data & FS_WD_G_MASK) == FS_WD_G)) {
if ((!fs26_getreg(&config->spi, FS26_FS_DIAG_SAFETY1, &rx_frame))
&& (rx_frame.data & BAD_WD_TIMING)) {
/* Clear flag */
regval = BAD_WD_TIMING;
fs26_setreg(&config->spi, FS26_FS_DIAG_SAFETY1, regval);
/* Invoke user callback */
if (data->callback && data->timeout_installed) {
data->callback(dev, 0);
}
}
}
}
}
static void wdt_nxp_fs26_int_callback(const struct device *dev,
struct gpio_callback *cb,
uint32_t pins)
{
struct wdt_nxp_fs26_data *data = CONTAINER_OF(cb, struct wdt_nxp_fs26_data,
int_gpio_cb);
ARG_UNUSED(dev);
ARG_UNUSED(pins);
k_sem_give(&data->int_sem);
}
static int wdt_nxp_fs26_init(const struct device *dev)
{
const struct wdt_nxp_fs26_config *config = dev->config;
struct wdt_nxp_fs26_data *data = dev->data;
struct fs26_spi_rx_frame rx_frame;
uint32_t regval;
/* Validate bus is ready */
if (!spi_is_ready_dt(&config->spi)) {
return -ENODEV;
}
k_sem_init(&data->int_sem, 0, 1);
/* Configure GPIO used for INTB signal */
if (!gpio_is_ready_dt(&config->int_gpio)) {
LOG_ERR("GPIO port %s not ready", config->int_gpio.port->name);
return -ENODEV;
}
if (gpio_pin_configure_dt(&config->int_gpio, GPIO_INPUT)) {
LOG_ERR("Unable to configure GPIO pin %u", config->int_gpio.pin);
return -EIO;
}
gpio_init_callback(&(data->int_gpio_cb), wdt_nxp_fs26_int_callback,
BIT(config->int_gpio.pin));
if (gpio_add_callback(config->int_gpio.port, &(data->int_gpio_cb))) {
return -EINVAL;
}
if (gpio_pin_interrupt_configure_dt(&config->int_gpio,
GPIO_INT_EDGE_FALLING)) {
return -EINVAL;
}
k_thread_create(&data->int_thread, data->int_thread_stack,
CONFIG_WDT_NXP_FS26_INT_THREAD_STACK_SIZE,
wdt_nxp_fs26_int_thread,
(void *)dev, NULL, NULL,
K_PRIO_COOP(CONFIG_WDT_NXP_FS26_INT_THREAD_PRIO),
0, K_NO_WAIT);
/* Verify FS BIST before proceeding */
if (fs26_getreg(&config->spi, FS26_FS_DIAG_SAFETY1, &rx_frame)) {
return -EIO;
}
if ((rx_frame.data & (ABIST1_PASS_MASK | LBIST_STATUS_MASK))
!= (ABIST1_PASS | LBIST_STATUS_OK)) {
LOG_ERR("BIST failed 0x%x", rx_frame.data);
return -EIO;
}
/* Get FS state machine state */
if (fs26_getreg(&config->spi, FS26_FS_STATES, &rx_frame)) {
return -EIO;
}
/* Verify if in DEBUG mode */
if ((rx_frame.data & DBG_MODE_MASK) == DBG_MODE) {
if (IS_ENABLED(CONFIG_WDT_NXP_FS26_EXIT_DEBUG_MODE)) {
LOG_DBG("Exiting DEBUG mode");
regval = rx_frame.data | EXIT_DBG_MODE;
fs26_setreg(&config->spi, FS26_FS_STATES, regval);
} else {
LOG_ERR("In DEBUG mode, watchdog is disabled");
return -EIO;
}
}
/* Go to INIT_FS state, if not already there */
if (fs26_goto_init_fs_state(dev)) {
LOG_ERR("Failed to go to INIT_FS");
return -EIO;
}
/* Clear pending FS diagnostic flags before initializing */
regval = BAD_WD_DATA | BAD_WD_TIMING | ABIST2_PASS | ABIST2_DONE
| SPI_FS_CLK | SPI_FS_REQ | SPI_FS_CRC | FS_OSC_DRIFT;
fs26_setreg(&config->spi, FS26_FS_DIAG_SAFETY1, regval);
/*
* Perform the following sequence for all INIT_FS registers (FS_I_xxxx)
* - Write the desired data in the FS_I_Register_A (data)
* - Write the opposite in the FS_I_NOT_Register_A (~data)
*/
/* OVUV_SAFE_REACTION1 */
regval = VMON_PRE_OV_FS_REACTION_NO_EFFECT |
VMON_PRE_UV_FS_REACTION_NO_EFFECT |
VMON_CORE_OV_FS_REACTION_NO_EFFECT |
VMON_CORE_UV_FS_REACTION_NO_EFFECT |
VMON_LDO1_OV_FS_REACTION_NO_EFFECT |
VMON_LDO1_UV_FS_REACTION_NO_EFFECT |
VMON_LDO2_OV_FS_REACTION_NO_EFFECT |
VMON_LDO2_UV_FS_REACTION_NO_EFFECT;
fs26_setreg(&config->spi, FS26_FS_I_OVUV_SAFE_REACTION1, regval);
fs26_setreg(&config->spi, FS26_FS_I_NOT_OVUV_SAFE_REACTION1, ~regval);
/* OVUV_SAFE_REACTION2 */
regval = VMON_EXT_OV_FS_REACTION_NO_EFFECT |
VMON_EXT_UV_FS_REACTION_NO_EFFECT |
VMON_REF_OV_FS_REACTION_NO_EFFECT |
VMON_REF_UV_FS_REACTION_NO_EFFECT |
VMON_TRK2_OV_FS_REACTION_NO_EFFECT |
VMON_TRK2_UV_FS_REACTION_NO_EFFECT |
VMON_TRK1_OV_FS_REACTION_NO_EFFECT |
VMON_TRK1_UV_FS_REACTION_NO_EFFECT;
fs26_setreg(&config->spi, FS26_FS_I_OVUV_SAFE_REACTION2, regval);
fs26_setreg(&config->spi, FS26_FS_I_NOT_OVUV_SAFE_REACTION2, ~regval);
/* FS_I_SAFE_INPUTS */
regval = FCCU_CFG_NO_MONITORING | ERRMON_ACK_TIME_32MS;
fs26_setreg(&config->spi, FS26_FS_I_SAFE_INPUTS, regval);
fs26_setreg(&config->spi, FS26_FS_I_NOT_SAFE_INPUTS, ~regval);
/* FS_I_FSSM */
regval = FLT_ERR_REACTION_NO_EFFECT | CLK_MON_DIS | DIS8S;
fs26_setreg(&config->spi, FS26_FS_I_FSSM, regval);
fs26_setreg(&config->spi, FS26_FS_I_NOT_FSSM, ~regval);
/* FS_I_WD_CFG */
regval = WD_ERR_LIMIT(CONFIG_WDT_NXP_FS26_ERROR_COUNTER_LIMIT)
| WD_RFR_LIMIT(CONFIG_WDT_NXP_FS26_REFRESH_COUNTER_LIMIT)
| WD_FS_REACTION_NO_ACTION;
fs26_setreg(&config->spi, FS26_FS_I_WD_CFG, regval);
fs26_setreg(&config->spi, FS26_FS_I_NOT_WD_CFG, ~regval);
/* FS_WDW_DURATION */
/* Watchdog always disabled at boot */
regval = WDW_PERIOD_DISABLE | WDW_RECOVERY_DISABLE;
fs26_setreg(&config->spi, FS26_FS_WDW_DURATION, regval);
fs26_setreg(&config->spi, FS26_FS_NOT_WDW_DURATION, ~regval);
/* Set watchdog seed if not using the default */
if (data->token != FS26_FS_WD_TOKEN_DEFAULT) {
LOG_DBG("Set seed to %x", data->token);
fs26_setreg(&config->spi, FS26_FS_WD_TOKEN, data->token);
}
/* Mask all Fail-Safe interrupt sources except for watchdog bad refresh */
regval = ~BAD_WD_M;
fs26_setreg(&config->spi, FS26_FS_INTB_MASK, regval);
/* Mask all main interrupt souces */
regval = 0xffff;
fs26_setreg(&config->spi, FS26_M_TSD_MSK, regval);
fs26_setreg(&config->spi, FS26_M_REG_MSK, regval);
fs26_setreg(&config->spi, FS26_M_VSUP_MSK, regval);
fs26_setreg(&config->spi, FS26_M_WIO_MSK, regval);
fs26_setreg(&config->spi, FS26_M_COM_MSK, regval);
/* INIT_FS must be closed before the 256 ms timeout */
if (fs26_exit_init_fs_state(dev)) {
LOG_ERR("Failed to close INIT_FS");
return -EIO;
}
/* After INIT_FS is completed, check for data corruption in init registers */
if (!fs26_getreg(&config->spi, FS26_FS_STATES, &rx_frame)) {
if ((rx_frame.data & REG_CORRUPT_MASK) == REG_CORRUPT) {
LOG_ERR("Data content corruption detected in init registers");
return -EIO;
}
}
return 0;
}
static const struct wdt_driver_api wdt_nxp_fs26_api = {
.setup = wdt_nxp_fs26_setup,
.disable = wdt_nxp_fs26_disable,
.install_timeout = wdt_nxp_fs26_install_timeout,
.feed = wdt_nxp_fs26_feed,
};
#define FS26_WDT_DEVICE_INIT(n) \
COND_CODE_1(DT_INST_ENUM_IDX(n, type), \
(BUILD_ASSERT(CONFIG_WDT_NXP_FS26_SEED != 0x0, \
"Seed value 0x0000 is not allowed");), \
(BUILD_ASSERT((CONFIG_WDT_NXP_FS26_SEED != 0x0) \
&& (CONFIG_WDT_NXP_FS26_SEED != 0xffff), \
"Seed values 0x0000 and 0xffff are not allowed");)) \
\
static struct wdt_nxp_fs26_data wdt_nxp_fs26_data_##n = { \
.token = CONFIG_WDT_NXP_FS26_SEED, \
}; \
\
static const struct wdt_nxp_fs26_config wdt_nxp_fs26_config_##n = { \
.spi = SPI_DT_SPEC_INST_GET(n, \
SPI_OP_MODE_MASTER | SPI_MODE_CPHA | SPI_WORD_SET(32), 0), \
.wd_type = _CONCAT(FS26_WD_, DT_INST_STRING_UPPER_TOKEN(n, type)), \
.int_gpio = GPIO_DT_SPEC_INST_GET(n, int_gpios), \
}; \
\
DEVICE_DT_INST_DEFINE(n, \
wdt_nxp_fs26_init, \
NULL, \
&wdt_nxp_fs26_data_##n, \
&wdt_nxp_fs26_config_##n, \
POST_KERNEL, \
CONFIG_WDT_NXP_FS26_INIT_PRIORITY, \
&wdt_nxp_fs26_api);
DT_INST_FOREACH_STATUS_OKAY(FS26_WDT_DEVICE_INIT)