zephyr/drivers/i2c/i2c_mcux_lpi2c.c

628 lines
16 KiB
C

/*
* Copyright (c) 2016 Freescale Semiconductor, Inc.
* Copyright 2019-2023, NXP
* Copyright (c) 2022 Vestas Wind Systems A/S
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_imx_lpi2c
#include <errno.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/kernel.h>
#include <zephyr/irq.h>
#include <fsl_lpi2c.h>
#if CONFIG_NXP_LP_FLEXCOMM
#include <zephyr/drivers/mfd/nxp_lp_flexcomm.h>
#endif
#include <zephyr/drivers/pinctrl.h>
#ifdef CONFIG_I2C_MCUX_LPI2C_BUS_RECOVERY
#include "i2c_bitbang.h"
#include <zephyr/drivers/gpio.h>
#endif /* CONFIG_I2C_MCUX_LPI2C_BUS_RECOVERY */
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(mcux_lpi2c);
#include "i2c-priv.h"
/* Wait for the duration of 12 bits to detect a NAK after a bus
* address scan. (10 appears sufficient, 20% safety factor.)
*/
#define SCAN_DELAY_US(baudrate) (12 * USEC_PER_SEC / baudrate)
/* Required by DEVICE_MMIO_NAMED_* macros */
#define DEV_CFG(_dev) \
((const struct mcux_lpi2c_config *)(_dev)->config)
#define DEV_DATA(_dev) ((struct mcux_lpi2c_data *)(_dev)->data)
struct mcux_lpi2c_config {
DEVICE_MMIO_NAMED_ROM(reg_base);
#ifdef CONFIG_NXP_LP_FLEXCOMM
const struct device *parent_dev;
#endif
const struct device *clock_dev;
clock_control_subsys_t clock_subsys;
void (*irq_config_func)(const struct device *dev);
uint32_t bitrate;
uint32_t bus_idle_timeout_ns;
const struct pinctrl_dev_config *pincfg;
#ifdef CONFIG_I2C_MCUX_LPI2C_BUS_RECOVERY
struct gpio_dt_spec scl;
struct gpio_dt_spec sda;
#endif /* CONFIG_I2C_MCUX_LPI2C_BUS_RECOVERY */
};
struct mcux_lpi2c_data {
DEVICE_MMIO_NAMED_RAM(reg_base);
lpi2c_master_handle_t handle;
struct k_sem lock;
struct k_sem device_sync_sem;
status_t callback_status;
#ifdef CONFIG_I2C_TARGET
lpi2c_slave_handle_t target_handle;
struct i2c_target_config *target_cfg;
bool target_attached;
bool first_tx;
bool read_active;
bool send_ack;
#endif
};
static int mcux_lpi2c_configure(const struct device *dev,
uint32_t dev_config_raw)
{
const struct mcux_lpi2c_config *config = dev->config;
struct mcux_lpi2c_data *data = dev->data;
LPI2C_Type *base = (LPI2C_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base);
uint32_t clock_freq;
uint32_t baudrate;
int ret;
if (!(I2C_MODE_CONTROLLER & dev_config_raw)) {
return -EINVAL;
}
if (I2C_ADDR_10_BITS & dev_config_raw) {
return -EINVAL;
}
switch (I2C_SPEED_GET(dev_config_raw)) {
case I2C_SPEED_STANDARD:
baudrate = KHZ(100);
break;
case I2C_SPEED_FAST:
baudrate = KHZ(400);
break;
case I2C_SPEED_FAST_PLUS:
baudrate = MHZ(1);
break;
default:
return -EINVAL;
}
if (clock_control_get_rate(config->clock_dev, config->clock_subsys,
&clock_freq)) {
return -EINVAL;
}
ret = k_sem_take(&data->lock, K_FOREVER);
if (ret) {
return ret;
}
LPI2C_MasterSetBaudRate(base, clock_freq, baudrate);
k_sem_give(&data->lock);
return 0;
}
static void mcux_lpi2c_master_transfer_callback(LPI2C_Type *base,
lpi2c_master_handle_t *handle,
status_t status, void *userData)
{
struct mcux_lpi2c_data *data = userData;
ARG_UNUSED(handle);
ARG_UNUSED(base);
data->callback_status = status;
k_sem_give(&data->device_sync_sem);
}
static uint32_t mcux_lpi2c_convert_flags(int msg_flags)
{
uint32_t flags = 0U;
if (!(msg_flags & I2C_MSG_STOP)) {
flags |= kLPI2C_TransferNoStopFlag;
}
if (msg_flags & I2C_MSG_RESTART) {
flags |= kLPI2C_TransferRepeatedStartFlag;
}
return flags;
}
static int mcux_lpi2c_transfer(const struct device *dev, struct i2c_msg *msgs,
uint8_t num_msgs, uint16_t addr)
{
const struct mcux_lpi2c_config *config = dev->config;
struct mcux_lpi2c_data *data = dev->data;
LPI2C_Type *base = (LPI2C_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base);
lpi2c_master_transfer_t transfer;
status_t status;
int ret = 0;
ret = k_sem_take(&data->lock, K_FOREVER);
if (ret) {
return ret;
}
/* Iterate over all the messages */
for (int i = 0; i < num_msgs; i++) {
if (I2C_MSG_ADDR_10_BITS & msgs->flags) {
ret = -ENOTSUP;
break;
}
/* Initialize the transfer descriptor */
transfer.flags = mcux_lpi2c_convert_flags(msgs->flags);
/* Prevent the controller to send a start condition between
* messages, except if explicitly requested.
*/
if (i != 0 && !(msgs->flags & I2C_MSG_RESTART)) {
transfer.flags |= kLPI2C_TransferNoStartFlag;
}
transfer.slaveAddress = addr;
transfer.direction = (msgs->flags & I2C_MSG_READ)
? kLPI2C_Read : kLPI2C_Write;
transfer.subaddress = 0;
transfer.subaddressSize = 0;
transfer.data = msgs->buf;
transfer.dataSize = msgs->len;
/* Start the transfer */
status = LPI2C_MasterTransferNonBlocking(base,
&data->handle, &transfer);
/* Return an error if the transfer didn't start successfully
* e.g., if the bus was busy
*/
if (status != kStatus_Success) {
LPI2C_MasterTransferAbort(base, &data->handle);
ret = -EIO;
break;
}
/* Wait for the transfer to complete */
k_sem_take(&data->device_sync_sem, K_FOREVER);
/* Return an error if the transfer didn't complete
* successfully. e.g., nak, timeout, lost arbitration
*/
if (data->callback_status != kStatus_Success) {
LPI2C_MasterTransferAbort(base, &data->handle);
ret = -EIO;
break;
}
if (msgs->len == 0) {
k_busy_wait(SCAN_DELAY_US(config->bitrate));
if (0 != (base->MSR & LPI2C_MSR_NDF_MASK)) {
LPI2C_MasterTransferAbort(base, &data->handle);
ret = -EIO;
break;
}
}
/* Move to the next message */
msgs++;
}
k_sem_give(&data->lock);
return ret;
}
#if CONFIG_I2C_MCUX_LPI2C_BUS_RECOVERY
static void mcux_lpi2c_bitbang_set_scl(void *io_context, int state)
{
const struct mcux_lpi2c_config *config = io_context;
gpio_pin_set_dt(&config->scl, state);
}
static void mcux_lpi2c_bitbang_set_sda(void *io_context, int state)
{
const struct mcux_lpi2c_config *config = io_context;
gpio_pin_set_dt(&config->sda, state);
}
static int mcux_lpi2c_bitbang_get_sda(void *io_context)
{
const struct mcux_lpi2c_config *config = io_context;
return gpio_pin_get_dt(&config->sda) == 0 ? 0 : 1;
}
static int mcux_lpi2c_recover_bus(const struct device *dev)
{
const struct mcux_lpi2c_config *config = dev->config;
struct mcux_lpi2c_data *data = dev->data;
struct i2c_bitbang bitbang_ctx;
struct i2c_bitbang_io bitbang_io = {
.set_scl = mcux_lpi2c_bitbang_set_scl,
.set_sda = mcux_lpi2c_bitbang_set_sda,
.get_sda = mcux_lpi2c_bitbang_get_sda,
};
uint32_t bitrate_cfg;
int error = 0;
if (!gpio_is_ready_dt(&config->scl)) {
LOG_ERR("SCL GPIO device not ready");
return -EIO;
}
if (!gpio_is_ready_dt(&config->sda)) {
LOG_ERR("SDA GPIO device not ready");
return -EIO;
}
k_sem_take(&data->lock, K_FOREVER);
error = gpio_pin_configure_dt(&config->scl, GPIO_OUTPUT_HIGH);
if (error != 0) {
LOG_ERR("failed to configure SCL GPIO (err %d)", error);
goto restore;
}
error = gpio_pin_configure_dt(&config->sda, GPIO_OUTPUT_HIGH);
if (error != 0) {
LOG_ERR("failed to configure SDA GPIO (err %d)", error);
goto restore;
}
i2c_bitbang_init(&bitbang_ctx, &bitbang_io, (void *)config);
bitrate_cfg = i2c_map_dt_bitrate(config->bitrate) | I2C_MODE_CONTROLLER;
error = i2c_bitbang_configure(&bitbang_ctx, bitrate_cfg);
if (error != 0) {
LOG_ERR("failed to configure I2C bitbang (err %d)", error);
goto restore;
}
error = i2c_bitbang_recover_bus(&bitbang_ctx);
if (error != 0) {
LOG_ERR("failed to recover bus (err %d)", error);
goto restore;
}
restore:
(void)pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
k_sem_give(&data->lock);
return error;
}
#endif /* CONFIG_I2C_MCUX_LPI2C_BUS_RECOVERY */
#ifdef CONFIG_I2C_TARGET
static void mcux_lpi2c_slave_irq_handler(const struct device *dev)
{
struct mcux_lpi2c_data *data = dev->data;
LPI2C_Type *base = (LPI2C_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base);
const struct i2c_target_callbacks *target_cb = data->target_cfg->callbacks;
int ret;
uint32_t flags;
uint8_t i2c_data;
/* Note- the HAL provides a callback-based I2C slave API, but
* the API expects the user to provide a transmit buffer of
* a fixed length at the first byte received, and will not signal
* the user callback until this buffer is exhausted. This does not
* work well with the Zephyr API, which requires callbacks for
* every byte. For these reason, we handle the LPI2C IRQ
* directly.
*/
flags = LPI2C_SlaveGetStatusFlags(base);
if (flags & kLPI2C_SlaveAddressValidFlag) {
/* Read Slave address to clear flag */
LPI2C_SlaveGetReceivedAddress(base);
data->first_tx = true;
/* Reset to sending ACK, in case we NAK'ed before */
data->send_ack = true;
}
if (flags & kLPI2C_SlaveRxReadyFlag) {
/* RX data is available, read it and issue callback */
i2c_data = (uint8_t)base->SRDR;
if (data->first_tx) {
data->first_tx = false;
if (target_cb->write_requested) {
ret = target_cb->write_requested(data->target_cfg);
if (ret < 0) {
/* NAK further bytes */
data->send_ack = false;
}
}
}
if (target_cb->write_received) {
ret = target_cb->write_received(data->target_cfg,
i2c_data);
if (ret < 0) {
/* NAK further bytes */
data->send_ack = false;
}
}
}
if (flags & kLPI2C_SlaveTxReadyFlag) {
/* Space is available in TX fifo, issue callback and write out */
if (data->first_tx) {
data->read_active = true;
data->first_tx = false;
if (target_cb->read_requested) {
ret = target_cb->read_requested(data->target_cfg,
&i2c_data);
if (ret < 0) {
/* Disable TX */
data->read_active = false;
} else {
/* Send I2C data */
base->STDR = i2c_data;
}
}
} else if (data->read_active) {
if (target_cb->read_processed) {
ret = target_cb->read_processed(data->target_cfg,
&i2c_data);
if (ret < 0) {
/* Disable TX */
data->read_active = false;
} else {
/* Send I2C data */
base->STDR = i2c_data;
}
}
}
}
if (flags & kLPI2C_SlaveStopDetectFlag) {
LPI2C_SlaveClearStatusFlags(base, flags);
if (target_cb->stop) {
target_cb->stop(data->target_cfg);
}
}
if (flags & kLPI2C_SlaveTransmitAckFlag) {
LPI2C_SlaveTransmitAck(base, data->send_ack);
}
}
static int mcux_lpi2c_target_register(const struct device *dev,
struct i2c_target_config *target_config)
{
const struct mcux_lpi2c_config *config = dev->config;
struct mcux_lpi2c_data *data = dev->data;
LPI2C_Type *base = (LPI2C_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base);
lpi2c_slave_config_t slave_config;
uint32_t clock_freq;
LPI2C_MasterDeinit(base);
/* Get the clock frequency */
if (clock_control_get_rate(config->clock_dev, config->clock_subsys,
&clock_freq)) {
return -EINVAL;
}
if (!target_config) {
return -EINVAL;
}
if (data->target_attached) {
return -EBUSY;
}
data->target_attached = true;
data->target_cfg = target_config;
data->first_tx = false;
LPI2C_SlaveGetDefaultConfig(&slave_config);
slave_config.address0 = target_config->address;
/* Note- this setting enables clock stretching to allow the
* slave to respond to each byte with an ACK/NAK.
* this behavior may cause issues with some I2C controllers.
*/
slave_config.sclStall.enableAck = true;
LPI2C_SlaveInit(base, &slave_config, clock_freq);
/* Clear all flags. */
LPI2C_SlaveClearStatusFlags(base, (uint32_t)kLPI2C_SlaveClearFlags);
/* Enable interrupt */
LPI2C_SlaveEnableInterrupts(base,
(kLPI2C_SlaveTxReadyFlag |
kLPI2C_SlaveRxReadyFlag |
kLPI2C_SlaveStopDetectFlag |
kLPI2C_SlaveAddressValidFlag |
kLPI2C_SlaveTransmitAckFlag));
return 0;
}
static int mcux_lpi2c_target_unregister(const struct device *dev,
struct i2c_target_config *target_config)
{
struct mcux_lpi2c_data *data = dev->data;
LPI2C_Type *base = (LPI2C_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base);
if (!data->target_attached) {
return -EINVAL;
}
data->target_cfg = NULL;
data->target_attached = false;
LPI2C_SlaveDeinit(base);
return 0;
}
#endif /* CONFIG_I2C_TARGET */
static void mcux_lpi2c_isr(const struct device *dev)
{
struct mcux_lpi2c_data *data = dev->data;
LPI2C_Type *base = (LPI2C_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base);
#ifdef CONFIG_I2C_TARGET
if (data->target_attached) {
mcux_lpi2c_slave_irq_handler(dev);
}
#endif /* CONFIG_I2C_TARGET */
#if CONFIG_HAS_MCUX_FLEXCOMM
LPI2C_MasterTransferHandleIRQ(LPI2C_GetInstance(base), &data->handle);
#else
LPI2C_MasterTransferHandleIRQ(base, &data->handle);
#endif
}
static int mcux_lpi2c_init(const struct device *dev)
{
const struct mcux_lpi2c_config *config = dev->config;
struct mcux_lpi2c_data *data = dev->data;
LPI2C_Type *base;
uint32_t clock_freq, bitrate_cfg;
lpi2c_master_config_t master_config;
int error;
DEVICE_MMIO_NAMED_MAP(dev, reg_base, K_MEM_CACHE_NONE | K_MEM_DIRECT_MAP);
base = (LPI2C_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base);
k_sem_init(&data->lock, 1, 1);
k_sem_init(&data->device_sync_sem, 0, K_SEM_MAX_LIMIT);
if (!device_is_ready(config->clock_dev)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
error = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
if (error) {
return error;
}
if (clock_control_get_rate(config->clock_dev, config->clock_subsys,
&clock_freq)) {
return -EINVAL;
}
LPI2C_MasterGetDefaultConfig(&master_config);
master_config.busIdleTimeout_ns = config->bus_idle_timeout_ns;
LPI2C_MasterInit(base, &master_config, clock_freq);
LPI2C_MasterTransferCreateHandle(base, &data->handle,
mcux_lpi2c_master_transfer_callback,
data);
bitrate_cfg = i2c_map_dt_bitrate(config->bitrate);
error = mcux_lpi2c_configure(dev, I2C_MODE_CONTROLLER | bitrate_cfg);
if (error) {
return error;
}
#if CONFIG_NXP_LP_FLEXCOMM
/* When using LP Flexcomm driver, register the interrupt handler
* so we receive notification from the LP Flexcomm interrupt handler.
*/
nxp_lp_flexcomm_setirqhandler(config->parent_dev, dev,
LP_FLEXCOMM_PERIPH_LPI2C, mcux_lpi2c_isr);
#else
/* Interrupt is managed by this driver */
config->irq_config_func(dev);
#endif
return 0;
}
static const struct i2c_driver_api mcux_lpi2c_driver_api = {
.configure = mcux_lpi2c_configure,
.transfer = mcux_lpi2c_transfer,
#if CONFIG_I2C_MCUX_LPI2C_BUS_RECOVERY
.recover_bus = mcux_lpi2c_recover_bus,
#endif /* CONFIG_I2C_MCUX_LPI2C_BUS_RECOVERY */
#if CONFIG_I2C_TARGET
.target_register = mcux_lpi2c_target_register,
.target_unregister = mcux_lpi2c_target_unregister,
#endif /* CONFIG_I2C_TARGET */
};
#if CONFIG_I2C_MCUX_LPI2C_BUS_RECOVERY
#define I2C_MCUX_LPI2C_SCL_INIT(n) .scl = GPIO_DT_SPEC_INST_GET_OR(n, scl_gpios, {0}),
#define I2C_MCUX_LPI2C_SDA_INIT(n) .sda = GPIO_DT_SPEC_INST_GET_OR(n, sda_gpios, {0}),
#else
#define I2C_MCUX_LPI2C_SCL_INIT(n)
#define I2C_MCUX_LPI2C_SDA_INIT(n)
#endif /* CONFIG_I2C_MCUX_LPI2C_BUS_RECOVERY */
#define I2C_MCUX_LPI2C_MODULE_IRQ_CONNECT(n) \
do { \
IRQ_CONNECT(DT_INST_IRQN(n), \
DT_INST_IRQ(n, priority), \
mcux_lpi2c_isr, \
DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQN(n)); \
} while (false)
#define I2C_MCUX_LPI2C_MODULE_IRQ(n) \
IF_ENABLED(DT_INST_IRQ_HAS_IDX(n, 0), \
(I2C_MCUX_LPI2C_MODULE_IRQ_CONNECT(n)))
#ifdef CONFIG_NXP_LP_FLEXCOMM
#define PARENT_DEV(n) \
.parent_dev = DEVICE_DT_GET(DT_INST_PARENT(n)),
#else
#define PARENT_DEV(n)
#endif /* CONFIG_NXP_LP_FLEXCOMM */
#define I2C_MCUX_LPI2C_INIT(n) \
PINCTRL_DT_INST_DEFINE(n); \
\
static void mcux_lpi2c_config_func_##n(const struct device *dev); \
\
static const struct mcux_lpi2c_config mcux_lpi2c_config_##n = { \
DEVICE_MMIO_NAMED_ROM_INIT(reg_base, DT_DRV_INST(n)), \
PARENT_DEV(n) \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \
.clock_subsys = \
(clock_control_subsys_t)DT_INST_CLOCKS_CELL(n, name),\
.irq_config_func = mcux_lpi2c_config_func_##n, \
.bitrate = DT_INST_PROP(n, clock_frequency), \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
I2C_MCUX_LPI2C_SCL_INIT(n) \
I2C_MCUX_LPI2C_SDA_INIT(n) \
.bus_idle_timeout_ns = \
UTIL_AND(DT_INST_NODE_HAS_PROP(n, bus_idle_timeout),\
DT_INST_PROP(n, bus_idle_timeout)), \
}; \
\
static struct mcux_lpi2c_data mcux_lpi2c_data_##n; \
\
I2C_DEVICE_DT_INST_DEFINE(n, mcux_lpi2c_init, NULL, \
&mcux_lpi2c_data_##n, \
&mcux_lpi2c_config_##n, POST_KERNEL, \
CONFIG_I2C_INIT_PRIORITY, \
&mcux_lpi2c_driver_api); \
\
static void mcux_lpi2c_config_func_##n(const struct device *dev) \
{ \
I2C_MCUX_LPI2C_MODULE_IRQ(n); \
}
DT_INST_FOREACH_STATUS_OKAY(I2C_MCUX_LPI2C_INIT)