zephyr/drivers/sensor/lsm6dsl/lsm6dsl.c

892 lines
21 KiB
C

/* lsm6dsl.c - Driver for LSM6DSL accelerometer, gyroscope and
* temperature sensor
*/
/*
* Copyright (c) 2017 Linaro Limited
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT st_lsm6dsl
#include <zephyr/drivers/sensor.h>
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <string.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/logging/log.h>
#include "lsm6dsl.h"
LOG_MODULE_REGISTER(LSM6DSL, CONFIG_SENSOR_LOG_LEVEL);
static const uint16_t lsm6dsl_odr_map[] = {0, 12, 26, 52, 104, 208, 416, 833,
1660, 3330, 6660};
#if defined(LSM6DSL_ACCEL_ODR_RUNTIME) || defined(LSM6DSL_GYRO_ODR_RUNTIME)
static int lsm6dsl_freq_to_odr_val(uint16_t freq)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(lsm6dsl_odr_map); i++) {
if (freq == lsm6dsl_odr_map[i]) {
return i;
}
}
return -EINVAL;
}
#endif
static int lsm6dsl_odr_to_freq_val(uint16_t odr)
{
/* for valid index, return value from map */
if (odr < ARRAY_SIZE(lsm6dsl_odr_map)) {
return lsm6dsl_odr_map[odr];
}
/* invalid index, return last entry */
return lsm6dsl_odr_map[ARRAY_SIZE(lsm6dsl_odr_map) - 1];
}
#ifdef LSM6DSL_ACCEL_FS_RUNTIME
static const uint16_t lsm6dsl_accel_fs_map[] = {2, 16, 4, 8};
static const uint16_t lsm6dsl_accel_fs_sens[] = {1, 8, 2, 4};
static int lsm6dsl_accel_range_to_fs_val(int32_t range)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(lsm6dsl_accel_fs_map); i++) {
if (range == lsm6dsl_accel_fs_map[i]) {
return i;
}
}
return -EINVAL;
}
#endif
#ifdef LSM6DSL_GYRO_FS_RUNTIME
static const uint16_t lsm6dsl_gyro_fs_map[] = {245, 500, 1000, 2000, 125};
static const uint16_t lsm6dsl_gyro_fs_sens[] = {2, 4, 8, 16, 1};
static int lsm6dsl_gyro_range_to_fs_val(int32_t range)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(lsm6dsl_gyro_fs_map); i++) {
if (range == lsm6dsl_gyro_fs_map[i]) {
return i;
}
}
return -EINVAL;
}
#endif
static inline int lsm6dsl_reboot(const struct device *dev)
{
struct lsm6dsl_data *data = dev->data;
if (data->hw_tf->update_reg(dev, LSM6DSL_REG_CTRL3_C,
LSM6DSL_MASK_CTRL3_C_BOOT,
1 << LSM6DSL_SHIFT_CTRL3_C_BOOT) < 0) {
return -EIO;
}
/* Wait sensor turn-on time as per datasheet */
k_busy_wait(USEC_PER_MSEC * 35U);
return 0;
}
static int lsm6dsl_accel_set_fs_raw(const struct device *dev, uint8_t fs)
{
struct lsm6dsl_data *data = dev->data;
if (data->hw_tf->update_reg(dev,
LSM6DSL_REG_CTRL1_XL,
LSM6DSL_MASK_CTRL1_XL_FS_XL,
fs << LSM6DSL_SHIFT_CTRL1_XL_FS_XL) < 0) {
return -EIO;
}
data->accel_fs = fs;
return 0;
}
static int lsm6dsl_accel_set_odr_raw(const struct device *dev, uint8_t odr)
{
struct lsm6dsl_data *data = dev->data;
if (data->hw_tf->update_reg(dev,
LSM6DSL_REG_CTRL1_XL,
LSM6DSL_MASK_CTRL1_XL_ODR_XL,
odr << LSM6DSL_SHIFT_CTRL1_XL_ODR_XL) < 0) {
return -EIO;
}
data->accel_freq = lsm6dsl_odr_to_freq_val(odr);
return 0;
}
static int lsm6dsl_gyro_set_fs_raw(const struct device *dev, uint8_t fs)
{
struct lsm6dsl_data *data = dev->data;
if (fs == GYRO_FULLSCALE_125) {
if (data->hw_tf->update_reg(dev,
LSM6DSL_REG_CTRL2_G,
LSM6DSL_MASK_CTRL2_FS125,
1 << LSM6DSL_SHIFT_CTRL2_FS125) < 0) {
return -EIO;
}
} else {
if (data->hw_tf->update_reg(dev,
LSM6DSL_REG_CTRL2_G,
LSM6DSL_MASK_CTRL2_G_FS_G,
fs << LSM6DSL_SHIFT_CTRL2_G_FS_G) < 0) {
return -EIO;
}
}
return 0;
}
static int lsm6dsl_gyro_set_odr_raw(const struct device *dev, uint8_t odr)
{
struct lsm6dsl_data *data = dev->data;
if (data->hw_tf->update_reg(dev,
LSM6DSL_REG_CTRL2_G,
LSM6DSL_MASK_CTRL2_G_ODR_G,
odr << LSM6DSL_SHIFT_CTRL2_G_ODR_G) < 0) {
return -EIO;
}
return 0;
}
#ifdef LSM6DSL_ACCEL_ODR_RUNTIME
static int lsm6dsl_accel_odr_set(const struct device *dev, uint16_t freq)
{
int odr;
odr = lsm6dsl_freq_to_odr_val(freq);
if (odr < 0) {
return odr;
}
if (lsm6dsl_accel_set_odr_raw(dev, odr) < 0) {
LOG_DBG("failed to set accelerometer sampling rate");
return -EIO;
}
return 0;
}
#endif
#ifdef LSM6DSL_ACCEL_FS_RUNTIME
static int lsm6dsl_accel_range_set(const struct device *dev, int32_t range)
{
int fs;
struct lsm6dsl_data *data = dev->data;
fs = lsm6dsl_accel_range_to_fs_val(range);
if (fs < 0) {
return fs;
}
if (lsm6dsl_accel_set_fs_raw(dev, fs) < 0) {
LOG_DBG("failed to set accelerometer full-scale");
return -EIO;
}
data->accel_sensitivity = (float)(lsm6dsl_accel_fs_sens[fs]
* SENSI_GRAIN_XL);
return 0;
}
#endif
static int lsm6dsl_accel_config(const struct device *dev,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (attr) {
#ifdef LSM6DSL_ACCEL_FS_RUNTIME
case SENSOR_ATTR_FULL_SCALE:
return lsm6dsl_accel_range_set(dev, sensor_ms2_to_g(val));
#endif
#ifdef LSM6DSL_ACCEL_ODR_RUNTIME
case SENSOR_ATTR_SAMPLING_FREQUENCY:
return lsm6dsl_accel_odr_set(dev, val->val1);
#endif
default:
LOG_DBG("Accel attribute not supported.");
return -ENOTSUP;
}
return 0;
}
#ifdef LSM6DSL_GYRO_ODR_RUNTIME
static int lsm6dsl_gyro_odr_set(const struct device *dev, uint16_t freq)
{
int odr;
odr = lsm6dsl_freq_to_odr_val(freq);
if (odr < 0) {
return odr;
}
if (lsm6dsl_gyro_set_odr_raw(dev, odr) < 0) {
LOG_DBG("failed to set gyroscope sampling rate");
return -EIO;
}
return 0;
}
#endif
#ifdef LSM6DSL_GYRO_FS_RUNTIME
static int lsm6dsl_gyro_range_set(const struct device *dev, int32_t range)
{
int fs;
struct lsm6dsl_data *data = dev->data;
fs = lsm6dsl_gyro_range_to_fs_val(range);
if (fs < 0) {
return fs;
}
if (lsm6dsl_gyro_set_fs_raw(dev, fs) < 0) {
LOG_DBG("failed to set gyroscope full-scale");
return -EIO;
}
data->gyro_sensitivity = (float)(lsm6dsl_gyro_fs_sens[fs]
* SENSI_GRAIN_G);
return 0;
}
#endif
static int lsm6dsl_gyro_config(const struct device *dev,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (attr) {
#ifdef LSM6DSL_GYRO_FS_RUNTIME
case SENSOR_ATTR_FULL_SCALE:
return lsm6dsl_gyro_range_set(dev, sensor_rad_to_degrees(val));
#endif
#ifdef LSM6DSL_GYRO_ODR_RUNTIME
case SENSOR_ATTR_SAMPLING_FREQUENCY:
return lsm6dsl_gyro_odr_set(dev, val->val1);
#endif
default:
LOG_DBG("Gyro attribute not supported.");
return -ENOTSUP;
}
return 0;
}
static int lsm6dsl_attr_set(const struct device *dev,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (chan) {
case SENSOR_CHAN_ACCEL_XYZ:
return lsm6dsl_accel_config(dev, chan, attr, val);
case SENSOR_CHAN_GYRO_XYZ:
return lsm6dsl_gyro_config(dev, chan, attr, val);
default:
LOG_WRN("attr_set() not supported on this channel.");
return -ENOTSUP;
}
return 0;
}
static int lsm6dsl_sample_fetch_accel(const struct device *dev)
{
struct lsm6dsl_data *data = dev->data;
uint8_t buf[6];
if (data->hw_tf->read_data(dev, LSM6DSL_REG_OUTX_L_XL,
buf, sizeof(buf)) < 0) {
LOG_DBG("failed to read sample");
return -EIO;
}
data->accel_sample_x = (int16_t)((uint16_t)(buf[0]) |
((uint16_t)(buf[1]) << 8));
data->accel_sample_y = (int16_t)((uint16_t)(buf[2]) |
((uint16_t)(buf[3]) << 8));
data->accel_sample_z = (int16_t)((uint16_t)(buf[4]) |
((uint16_t)(buf[5]) << 8));
return 0;
}
static int lsm6dsl_sample_fetch_gyro(const struct device *dev)
{
struct lsm6dsl_data *data = dev->data;
uint8_t buf[6];
if (data->hw_tf->read_data(dev, LSM6DSL_REG_OUTX_L_G,
buf, sizeof(buf)) < 0) {
LOG_DBG("failed to read sample");
return -EIO;
}
data->gyro_sample_x = (int16_t)((uint16_t)(buf[0]) |
((uint16_t)(buf[1]) << 8));
data->gyro_sample_y = (int16_t)((uint16_t)(buf[2]) |
((uint16_t)(buf[3]) << 8));
data->gyro_sample_z = (int16_t)((uint16_t)(buf[4]) |
((uint16_t)(buf[5]) << 8));
return 0;
}
#if defined(CONFIG_LSM6DSL_ENABLE_TEMP)
static int lsm6dsl_sample_fetch_temp(const struct device *dev)
{
struct lsm6dsl_data *data = dev->data;
uint8_t buf[2];
if (data->hw_tf->read_data(dev, LSM6DSL_REG_OUT_TEMP_L,
buf, sizeof(buf)) < 0) {
LOG_DBG("failed to read sample");
return -EIO;
}
data->temp_sample = (int16_t)((uint16_t)(buf[0]) |
((uint16_t)(buf[1]) << 8));
return 0;
}
#endif
#if defined(CONFIG_LSM6DSL_EXT0_LIS2MDL)
static int lsm6dsl_sample_fetch_magn(const struct device *dev)
{
struct lsm6dsl_data *data = dev->data;
uint8_t buf[6];
if (lsm6dsl_shub_read_external_chip(dev, buf, sizeof(buf)) < 0) {
LOG_DBG("failed to read ext mag sample");
return -EIO;
}
data->magn_sample_x = (int16_t)((uint16_t)(buf[0]) |
((uint16_t)(buf[1]) << 8));
data->magn_sample_y = (int16_t)((uint16_t)(buf[2]) |
((uint16_t)(buf[3]) << 8));
data->magn_sample_z = (int16_t)((uint16_t)(buf[4]) |
((uint16_t)(buf[5]) << 8));
return 0;
}
#endif
#if defined(CONFIG_LSM6DSL_EXT0_LPS22HB)
static int lsm6dsl_sample_fetch_press(const struct device *dev)
{
struct lsm6dsl_data *data = dev->data;
uint8_t buf[5];
if (lsm6dsl_shub_read_external_chip(dev, buf, sizeof(buf)) < 0) {
LOG_DBG("failed to read ext press sample");
return -EIO;
}
data->sample_press = (int32_t)((uint32_t)(buf[0]) |
((uint32_t)(buf[1]) << 8) |
((uint32_t)(buf[2]) << 16));
data->sample_temp = (int16_t)((uint16_t)(buf[3]) |
((uint16_t)(buf[4]) << 8));
return 0;
}
#endif
static int lsm6dsl_sample_fetch(const struct device *dev,
enum sensor_channel chan)
{
switch (chan) {
case SENSOR_CHAN_ACCEL_XYZ:
lsm6dsl_sample_fetch_accel(dev);
break;
case SENSOR_CHAN_GYRO_XYZ:
lsm6dsl_sample_fetch_gyro(dev);
break;
#if defined(CONFIG_LSM6DSL_ENABLE_TEMP)
case SENSOR_CHAN_DIE_TEMP:
lsm6dsl_sample_fetch_temp(dev);
break;
#endif
#if defined(CONFIG_LSM6DSL_EXT0_LIS2MDL)
case SENSOR_CHAN_MAGN_XYZ:
lsm6dsl_sample_fetch_magn(dev);
break;
#endif
#if defined(CONFIG_LSM6DSL_EXT0_LPS22HB)
case SENSOR_CHAN_AMBIENT_TEMP:
case SENSOR_CHAN_PRESS:
lsm6dsl_sample_fetch_press(dev);
break;
#endif
case SENSOR_CHAN_ALL:
lsm6dsl_sample_fetch_accel(dev);
lsm6dsl_sample_fetch_gyro(dev);
#if defined(CONFIG_LSM6DSL_ENABLE_TEMP)
lsm6dsl_sample_fetch_temp(dev);
#endif
#if defined(CONFIG_LSM6DSL_EXT0_LIS2MDL)
lsm6dsl_sample_fetch_magn(dev);
#endif
#if defined(CONFIG_LSM6DSL_EXT0_LPS22HB)
lsm6dsl_sample_fetch_press(dev);
#endif
break;
default:
return -ENOTSUP;
}
return 0;
}
static inline void lsm6dsl_accel_convert(struct sensor_value *val, int raw_val,
float sensitivity)
{
double dval;
/* Sensitivity is exposed in mg/LSB */
/* Convert to m/s^2 */
dval = (double)(raw_val) * (double)sensitivity * SENSOR_G_DOUBLE / 1000;
val->val1 = (int32_t)dval;
val->val2 = (((int32_t)(dval * 1000)) % 1000) * 1000;
}
static inline int lsm6dsl_accel_get_channel(enum sensor_channel chan,
struct sensor_value *val,
struct lsm6dsl_data *data,
float sensitivity)
{
switch (chan) {
case SENSOR_CHAN_ACCEL_X:
lsm6dsl_accel_convert(val, data->accel_sample_x, sensitivity);
break;
case SENSOR_CHAN_ACCEL_Y:
lsm6dsl_accel_convert(val, data->accel_sample_y, sensitivity);
break;
case SENSOR_CHAN_ACCEL_Z:
lsm6dsl_accel_convert(val, data->accel_sample_z, sensitivity);
break;
case SENSOR_CHAN_ACCEL_XYZ:
lsm6dsl_accel_convert(val, data->accel_sample_x, sensitivity);
lsm6dsl_accel_convert(val + 1, data->accel_sample_y,
sensitivity);
lsm6dsl_accel_convert(val + 2, data->accel_sample_z,
sensitivity);
break;
default:
return -ENOTSUP;
}
return 0;
}
static int lsm6dsl_accel_channel_get(enum sensor_channel chan,
struct sensor_value *val,
struct lsm6dsl_data *data)
{
return lsm6dsl_accel_get_channel(chan, val, data,
data->accel_sensitivity);
}
static inline void lsm6dsl_gyro_convert(struct sensor_value *val, int raw_val,
float sensitivity)
{
double dval;
/* Sensitivity is exposed in mdps/LSB */
/* Convert to rad/s */
dval = (double)(raw_val * (double)sensitivity * SENSOR_DEG2RAD_DOUBLE / 1000);
val->val1 = (int32_t)dval;
val->val2 = (((int32_t)(dval * 1000)) % 1000) * 1000;
}
static inline int lsm6dsl_gyro_get_channel(enum sensor_channel chan,
struct sensor_value *val,
struct lsm6dsl_data *data,
float sensitivity)
{
switch (chan) {
case SENSOR_CHAN_GYRO_X:
lsm6dsl_gyro_convert(val, data->gyro_sample_x, sensitivity);
break;
case SENSOR_CHAN_GYRO_Y:
lsm6dsl_gyro_convert(val, data->gyro_sample_y, sensitivity);
break;
case SENSOR_CHAN_GYRO_Z:
lsm6dsl_gyro_convert(val, data->gyro_sample_z, sensitivity);
break;
case SENSOR_CHAN_GYRO_XYZ:
lsm6dsl_gyro_convert(val, data->gyro_sample_x, sensitivity);
lsm6dsl_gyro_convert(val + 1, data->gyro_sample_y, sensitivity);
lsm6dsl_gyro_convert(val + 2, data->gyro_sample_z, sensitivity);
break;
default:
return -ENOTSUP;
}
return 0;
}
static int lsm6dsl_gyro_channel_get(enum sensor_channel chan,
struct sensor_value *val,
struct lsm6dsl_data *data)
{
return lsm6dsl_gyro_get_channel(chan, val, data,
LSM6DSL_DEFAULT_GYRO_SENSITIVITY);
}
#if defined(CONFIG_LSM6DSL_ENABLE_TEMP)
static void lsm6dsl_gyro_channel_get_temp(struct sensor_value *val,
struct lsm6dsl_data *data)
{
/* val = temp_sample / 256 + 25 */
val->val1 = data->temp_sample / 256 + 25;
val->val2 = (data->temp_sample % 256) * (1000000 / 256);
}
#endif
#if defined(CONFIG_LSM6DSL_EXT0_LIS2MDL)
static inline void lsm6dsl_magn_convert(struct sensor_value *val, int raw_val,
float sensitivity)
{
double dval;
/* Sensitivity is exposed in mgauss/LSB */
dval = (double)(raw_val * sensitivity);
val->val1 = (int32_t)dval / 1000000;
val->val2 = (int32_t)dval % 1000000;
}
static inline int lsm6dsl_magn_get_channel(enum sensor_channel chan,
struct sensor_value *val,
struct lsm6dsl_data *data)
{
switch (chan) {
case SENSOR_CHAN_MAGN_X:
lsm6dsl_magn_convert(val,
data->magn_sample_x,
data->magn_sensitivity);
break;
case SENSOR_CHAN_MAGN_Y:
lsm6dsl_magn_convert(val,
data->magn_sample_y,
data->magn_sensitivity);
break;
case SENSOR_CHAN_MAGN_Z:
lsm6dsl_magn_convert(val,
data->magn_sample_z,
data->magn_sensitivity);
break;
case SENSOR_CHAN_MAGN_XYZ:
lsm6dsl_magn_convert(val,
data->magn_sample_x,
data->magn_sensitivity);
lsm6dsl_magn_convert(val + 1,
data->magn_sample_y,
data->magn_sensitivity);
lsm6dsl_magn_convert(val + 2,
data->magn_sample_z,
data->magn_sensitivity);
break;
default:
return -ENOTSUP;
}
return 0;
}
static int lsm6dsl_magn_channel_get(enum sensor_channel chan,
struct sensor_value *val,
struct lsm6dsl_data *data)
{
return lsm6dsl_magn_get_channel(chan, val, data);
}
#endif
#if defined(CONFIG_LSM6DSL_EXT0_LPS22HB)
static inline void lps22hb_press_convert(struct sensor_value *val,
int32_t raw_val)
{
/* Pressure sensitivity is 4096 LSB/hPa */
/* Convert raw_val to val in kPa */
val->val1 = (raw_val >> 12) / 10;
val->val2 = (raw_val >> 12) % 10 * 100000 +
(((int32_t)((raw_val) & 0x0FFF) * 100000L) >> 12);
}
static inline void lps22hb_temp_convert(struct sensor_value *val,
int16_t raw_val)
{
/* Temperature sensitivity is 100 LSB/deg C */
val->val1 = raw_val / 100;
val->val2 = (int32_t)raw_val % 100 * (10000);
}
#endif
static int lsm6dsl_channel_get(const struct device *dev,
enum sensor_channel chan,
struct sensor_value *val)
{
struct lsm6dsl_data *data = dev->data;
switch (chan) {
case SENSOR_CHAN_ACCEL_X:
case SENSOR_CHAN_ACCEL_Y:
case SENSOR_CHAN_ACCEL_Z:
case SENSOR_CHAN_ACCEL_XYZ:
lsm6dsl_accel_channel_get(chan, val, data);
break;
case SENSOR_CHAN_GYRO_X:
case SENSOR_CHAN_GYRO_Y:
case SENSOR_CHAN_GYRO_Z:
case SENSOR_CHAN_GYRO_XYZ:
lsm6dsl_gyro_channel_get(chan, val, data);
break;
#if defined(CONFIG_LSM6DSL_ENABLE_TEMP)
case SENSOR_CHAN_DIE_TEMP:
lsm6dsl_gyro_channel_get_temp(val, data);
break;
#endif
#if defined(CONFIG_LSM6DSL_EXT0_LIS2MDL)
case SENSOR_CHAN_MAGN_X:
case SENSOR_CHAN_MAGN_Y:
case SENSOR_CHAN_MAGN_Z:
case SENSOR_CHAN_MAGN_XYZ:
lsm6dsl_magn_channel_get(chan, val, data);
break;
#endif
#if defined(CONFIG_LSM6DSL_EXT0_LPS22HB)
case SENSOR_CHAN_PRESS:
lps22hb_press_convert(val, data->sample_press);
break;
case SENSOR_CHAN_AMBIENT_TEMP:
lps22hb_temp_convert(val, data->sample_temp);
break;
#endif
default:
return -ENOTSUP;
}
return 0;
}
static const struct sensor_driver_api lsm6dsl_driver_api = {
.attr_set = lsm6dsl_attr_set,
#if CONFIG_LSM6DSL_TRIGGER
.trigger_set = lsm6dsl_trigger_set,
#endif
.sample_fetch = lsm6dsl_sample_fetch,
.channel_get = lsm6dsl_channel_get,
};
static int lsm6dsl_init_chip(const struct device *dev)
{
struct lsm6dsl_data *data = dev->data;
uint8_t chip_id;
if (lsm6dsl_reboot(dev) < 0) {
LOG_DBG("failed to reboot device");
return -EIO;
}
if (data->hw_tf->read_reg(dev, LSM6DSL_REG_WHO_AM_I, &chip_id) < 0) {
LOG_DBG("failed reading chip id");
return -EIO;
}
if (chip_id != LSM6DSL_VAL_WHO_AM_I) {
LOG_DBG("invalid chip id 0x%x", chip_id);
return -EIO;
}
LOG_DBG("chip id 0x%x", chip_id);
if (lsm6dsl_accel_set_fs_raw(dev,
LSM6DSL_DEFAULT_ACCEL_FULLSCALE) < 0) {
LOG_DBG("failed to set accelerometer full-scale");
return -EIO;
}
data->accel_sensitivity = LSM6DSL_DEFAULT_ACCEL_SENSITIVITY;
data->accel_freq = lsm6dsl_odr_to_freq_val(CONFIG_LSM6DSL_ACCEL_ODR);
if (lsm6dsl_accel_set_odr_raw(dev, CONFIG_LSM6DSL_ACCEL_ODR) < 0) {
LOG_DBG("failed to set accelerometer sampling rate");
return -EIO;
}
if (lsm6dsl_gyro_set_fs_raw(dev, LSM6DSL_DEFAULT_GYRO_FULLSCALE) < 0) {
LOG_DBG("failed to set gyroscope full-scale");
return -EIO;
}
data->gyro_sensitivity = LSM6DSL_DEFAULT_GYRO_SENSITIVITY;
data->gyro_freq = lsm6dsl_odr_to_freq_val(CONFIG_LSM6DSL_GYRO_ODR);
if (lsm6dsl_gyro_set_odr_raw(dev, CONFIG_LSM6DSL_GYRO_ODR) < 0) {
LOG_DBG("failed to set gyroscope sampling rate");
return -EIO;
}
if (data->hw_tf->update_reg(dev,
LSM6DSL_REG_FIFO_CTRL5,
LSM6DSL_MASK_FIFO_CTRL5_FIFO_MODE,
0 << LSM6DSL_SHIFT_FIFO_CTRL5_FIFO_MODE) < 0) {
LOG_DBG("failed to set FIFO mode");
return -EIO;
}
if (data->hw_tf->update_reg(dev,
LSM6DSL_REG_CTRL3_C,
LSM6DSL_MASK_CTRL3_C_BDU |
LSM6DSL_MASK_CTRL3_C_BLE |
LSM6DSL_MASK_CTRL3_C_IF_INC,
(1 << LSM6DSL_SHIFT_CTRL3_C_BDU) |
(0 << LSM6DSL_SHIFT_CTRL3_C_BLE) |
(1 << LSM6DSL_SHIFT_CTRL3_C_IF_INC)) < 0) {
LOG_DBG("failed to set BDU, BLE and burst");
return -EIO;
}
return 0;
}
static int lsm6dsl_init(const struct device *dev)
{
int ret;
const struct lsm6dsl_config * const config = dev->config;
ret = config->bus_init(dev);
if (ret < 0) {
LOG_ERR("Failed to initialize sensor bus");
return ret;
}
ret = lsm6dsl_init_chip(dev);
if (ret < 0) {
LOG_ERR("Failed to initialize chip");
return ret;
}
#ifdef CONFIG_LSM6DSL_TRIGGER
ret = lsm6dsl_init_interrupt(dev);
if (ret < 0) {
LOG_ERR("Failed to initialize interrupt.");
return ret;
}
#endif
#ifdef CONFIG_LSM6DSL_SENSORHUB
ret = lsm6dsl_shub_init_external_chip(dev);
if (ret < 0) {
LOG_ERR("Failed to initialize external chip");
return ret;
}
#endif
return 0;
}
#if DT_NUM_INST_STATUS_OKAY(DT_DRV_COMPAT) == 0
#warning "LSM6DSL driver enabled without any devices"
#endif
/*
* Device creation macro, shared by LSM6DSL_DEFINE_SPI() and
* LSM6DSL_DEFINE_I2C().
*/
#define LSM6DSL_DEVICE_INIT(inst) \
DEVICE_DT_INST_DEFINE(inst, \
lsm6dsl_init, \
NULL, \
&lsm6dsl_data_##inst, \
&lsm6dsl_config_##inst, \
POST_KERNEL, \
CONFIG_SENSOR_INIT_PRIORITY, \
&lsm6dsl_driver_api);
/*
* Instantiation macros used when a device is on a SPI bus.
*/
#ifdef CONFIG_LSM6DSL_TRIGGER
#define LSM6DSL_CFG_IRQ(inst) \
.int_gpio = GPIO_DT_SPEC_INST_GET(inst, irq_gpios),
#else
#define LSM6DSL_CFG_IRQ(inst)
#endif /* CONFIG_LSM6DSL_TRIGGER */
#define LSM6DSL_CONFIG_SPI(inst) \
{ \
.bus_init = lsm6dsl_spi_init, \
.bus_cfg.spi = SPI_DT_SPEC_INST_GET(inst, SPI_WORD_SET(8) | \
SPI_OP_MODE_MASTER | \
SPI_MODE_CPOL | \
SPI_MODE_CPHA, 0), \
COND_CODE_1(DT_INST_NODE_HAS_PROP(inst, irq_gpios), \
(LSM6DSL_CFG_IRQ(inst)), ()) \
}
#define LSM6DSL_DEFINE_SPI(inst) \
static struct lsm6dsl_data lsm6dsl_data_##inst; \
static const struct lsm6dsl_config lsm6dsl_config_##inst = \
LSM6DSL_CONFIG_SPI(inst); \
LSM6DSL_DEVICE_INIT(inst)
/*
* Instantiation macros used when a device is on an I2C bus.
*/
#define LSM6DSL_CONFIG_I2C(inst) \
{ \
.bus_init = lsm6dsl_i2c_init, \
.bus_cfg.i2c = I2C_DT_SPEC_INST_GET(inst), \
COND_CODE_1(DT_INST_NODE_HAS_PROP(inst, irq_gpios), \
(LSM6DSL_CFG_IRQ(inst)), ()) \
}
#define LSM6DSL_DEFINE_I2C(inst) \
static struct lsm6dsl_data lsm6dsl_data_##inst; \
static const struct lsm6dsl_config lsm6dsl_config_##inst = \
LSM6DSL_CONFIG_I2C(inst); \
LSM6DSL_DEVICE_INIT(inst)
/*
* Main instantiation macro. Use of COND_CODE_1() selects the right
* bus-specific macro at preprocessor time.
*/
#define LSM6DSL_DEFINE(inst) \
COND_CODE_1(DT_INST_ON_BUS(inst, spi), \
(LSM6DSL_DEFINE_SPI(inst)), \
(LSM6DSL_DEFINE_I2C(inst)))
DT_INST_FOREACH_STATUS_OKAY(LSM6DSL_DEFINE)