1725 lines
45 KiB
C
1725 lines
45 KiB
C
/*
|
|
* Copyright (c) 2016 Open-RnD Sp. z o.o.
|
|
* Copyright (c) 2016 Linaro Limited.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#define DT_DRV_COMPAT st_stm32_uart
|
|
|
|
/**
|
|
* @brief Driver for UART port on STM32 family processor.
|
|
* @note LPUART and U(S)ART have the same base and
|
|
* majority of operations are performed the same way.
|
|
* Please validate for newly added series.
|
|
*/
|
|
|
|
#include <kernel.h>
|
|
#include <arch/cpu.h>
|
|
#include <sys/__assert.h>
|
|
#include <soc.h>
|
|
#include <init.h>
|
|
#include <drivers/uart.h>
|
|
#include <drivers/clock_control.h>
|
|
#include <pm/pm.h>
|
|
|
|
#ifdef CONFIG_UART_ASYNC_API
|
|
#include <drivers/dma/dma_stm32.h>
|
|
#include <drivers/dma.h>
|
|
#endif
|
|
|
|
#include <linker/sections.h>
|
|
#include <drivers/clock_control/stm32_clock_control.h>
|
|
#include "uart_stm32.h"
|
|
|
|
#include <stm32_ll_usart.h>
|
|
#include <stm32_ll_lpuart.h>
|
|
|
|
#include <logging/log.h>
|
|
LOG_MODULE_REGISTER(uart_stm32);
|
|
|
|
#define HAS_LPUART_1 (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(lpuart1), \
|
|
st_stm32_lpuart, okay))
|
|
|
|
#define UART_STRUCT(dev) \
|
|
((USART_TypeDef *) \
|
|
((const struct uart_stm32_config *const)(dev)->config)->uconf.base)
|
|
|
|
#if HAS_LPUART_1
|
|
#ifdef USART_PRESC_PRESCALER
|
|
uint32_t lpuartdiv_calc(const uint64_t clock_rate, const uint16_t presc_idx,
|
|
const uint32_t baud_rate)
|
|
{
|
|
uint64_t lpuartdiv;
|
|
|
|
lpuartdiv = clock_rate / LPUART_PRESCALER_TAB[presc_idx];
|
|
lpuartdiv *= LPUART_LPUARTDIV_FREQ_MUL;
|
|
lpuartdiv += baud_rate / 2;
|
|
lpuartdiv /= baud_rate;
|
|
|
|
return (uint32_t)lpuartdiv;
|
|
}
|
|
#else
|
|
uint32_t lpuartdiv_calc(const uint64_t clock_rate, const uint32_t baud_rate)
|
|
{
|
|
uint64_t lpuartdiv;
|
|
|
|
lpuartdiv = clock_rate * LPUART_LPUARTDIV_FREQ_MUL;
|
|
lpuartdiv += baud_rate / 2;
|
|
lpuartdiv /= baud_rate;
|
|
|
|
return (uint32_t)lpuartdiv;
|
|
}
|
|
#endif /* USART_PRESC_PRESCALER */
|
|
#endif /* HAS_LPUART_1 */
|
|
|
|
#define TIMEOUT 1000
|
|
|
|
#ifdef CONFIG_PM
|
|
static void uart_stm32_pm_constraint_set(const struct device *dev)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
|
|
if (!data->pm_constraint_on) {
|
|
data->pm_constraint_on = true;
|
|
pm_constraint_set(PM_STATE_SUSPEND_TO_IDLE);
|
|
}
|
|
}
|
|
|
|
static void uart_stm32_pm_constraint_release(const struct device *dev)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
|
|
if (data->pm_constraint_on) {
|
|
data->pm_constraint_on = false;
|
|
pm_constraint_release(PM_STATE_SUSPEND_TO_IDLE);
|
|
}
|
|
}
|
|
#endif /* CONFIG_PM */
|
|
|
|
static inline void uart_stm32_set_baudrate(const struct device *dev,
|
|
uint32_t baud_rate)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
struct uart_stm32_data *data = dev->data;
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
|
|
uint32_t clock_rate;
|
|
|
|
/* Get clock rate */
|
|
if (clock_control_get_rate(data->clock,
|
|
(clock_control_subsys_t *)&config->pclken,
|
|
&clock_rate) < 0) {
|
|
LOG_ERR("Failed call clock_control_get_rate");
|
|
return;
|
|
}
|
|
|
|
#if HAS_LPUART_1
|
|
if (IS_LPUART_INSTANCE(UartInstance)) {
|
|
uint32_t lpuartdiv;
|
|
#ifdef USART_PRESC_PRESCALER
|
|
uint8_t presc_idx;
|
|
uint32_t presc_val;
|
|
|
|
for (presc_idx = 0; presc_idx < ARRAY_SIZE(LPUART_PRESCALER_TAB); presc_idx++) {
|
|
lpuartdiv = lpuartdiv_calc(clock_rate, presc_idx, baud_rate);
|
|
if (lpuartdiv >= LPUART_BRR_MIN_VALUE && lpuartdiv <= LPUART_BRR_MASK) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (presc_idx == ARRAY_SIZE(LPUART_PRESCALER_TAB)) {
|
|
LOG_ERR("Unable to set %s to %d", dev->name, baud_rate);
|
|
return;
|
|
}
|
|
|
|
presc_val = presc_idx << USART_PRESC_PRESCALER_Pos;
|
|
|
|
LL_LPUART_SetPrescaler(UartInstance, presc_val);
|
|
#else
|
|
lpuartdiv = lpuartdiv_calc(clock_rate, baud_rate);
|
|
if (lpuartdiv < LPUART_BRR_MIN_VALUE || lpuartdiv > LPUART_BRR_MASK) {
|
|
LOG_ERR("Unable to set %s to %d", dev->name, baud_rate);
|
|
return;
|
|
}
|
|
#endif /* USART_PRESC_PRESCALER */
|
|
LL_LPUART_SetBaudRate(UartInstance,
|
|
clock_rate,
|
|
#ifdef USART_PRESC_PRESCALER
|
|
presc_val,
|
|
#endif
|
|
baud_rate);
|
|
} else {
|
|
#endif /* HAS_LPUART_1 */
|
|
#ifdef USART_CR1_OVER8
|
|
LL_USART_SetOverSampling(UartInstance,
|
|
LL_USART_OVERSAMPLING_16);
|
|
#endif
|
|
LL_USART_SetBaudRate(UartInstance,
|
|
clock_rate,
|
|
#ifdef USART_PRESC_PRESCALER
|
|
LL_USART_PRESCALER_DIV1,
|
|
#endif
|
|
#ifdef USART_CR1_OVER8
|
|
LL_USART_OVERSAMPLING_16,
|
|
#endif
|
|
baud_rate);
|
|
|
|
#if HAS_LPUART_1
|
|
}
|
|
#endif /* HAS_LPUART_1 */
|
|
}
|
|
|
|
static inline void uart_stm32_set_parity(const struct device *dev,
|
|
uint32_t parity)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
|
|
LL_USART_SetParity(UartInstance, parity);
|
|
}
|
|
|
|
static inline uint32_t uart_stm32_get_parity(const struct device *dev)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
|
|
return LL_USART_GetParity(UartInstance);
|
|
}
|
|
|
|
static inline void uart_stm32_set_stopbits(const struct device *dev,
|
|
uint32_t stopbits)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
|
|
LL_USART_SetStopBitsLength(UartInstance, stopbits);
|
|
}
|
|
|
|
static inline uint32_t uart_stm32_get_stopbits(const struct device *dev)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
|
|
return LL_USART_GetStopBitsLength(UartInstance);
|
|
}
|
|
|
|
static inline void uart_stm32_set_databits(const struct device *dev,
|
|
uint32_t databits)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
|
|
LL_USART_SetDataWidth(UartInstance, databits);
|
|
}
|
|
|
|
static inline uint32_t uart_stm32_get_databits(const struct device *dev)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
|
|
return LL_USART_GetDataWidth(UartInstance);
|
|
}
|
|
|
|
static inline void uart_stm32_set_hwctrl(const struct device *dev,
|
|
uint32_t hwctrl)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
|
|
LL_USART_SetHWFlowCtrl(UartInstance, hwctrl);
|
|
}
|
|
|
|
static inline uint32_t uart_stm32_get_hwctrl(const struct device *dev)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
|
|
return LL_USART_GetHWFlowCtrl(UartInstance);
|
|
}
|
|
|
|
static inline uint32_t uart_stm32_cfg2ll_parity(enum uart_config_parity parity)
|
|
{
|
|
switch (parity) {
|
|
case UART_CFG_PARITY_ODD:
|
|
return LL_USART_PARITY_ODD;
|
|
case UART_CFG_PARITY_EVEN:
|
|
return LL_USART_PARITY_EVEN;
|
|
case UART_CFG_PARITY_NONE:
|
|
default:
|
|
return LL_USART_PARITY_NONE;
|
|
}
|
|
}
|
|
|
|
static inline enum uart_config_parity uart_stm32_ll2cfg_parity(uint32_t parity)
|
|
{
|
|
switch (parity) {
|
|
case LL_USART_PARITY_ODD:
|
|
return UART_CFG_PARITY_ODD;
|
|
case LL_USART_PARITY_EVEN:
|
|
return UART_CFG_PARITY_EVEN;
|
|
case LL_USART_PARITY_NONE:
|
|
default:
|
|
return UART_CFG_PARITY_NONE;
|
|
}
|
|
}
|
|
|
|
static inline uint32_t uart_stm32_cfg2ll_stopbits(enum uart_config_stop_bits sb)
|
|
{
|
|
switch (sb) {
|
|
/* Some MCU's don't support 0.5 stop bits */
|
|
#ifdef LL_USART_STOPBITS_0_5
|
|
case UART_CFG_STOP_BITS_0_5:
|
|
return LL_USART_STOPBITS_0_5;
|
|
#endif /* LL_USART_STOPBITS_0_5 */
|
|
case UART_CFG_STOP_BITS_1:
|
|
return LL_USART_STOPBITS_1;
|
|
/* Some MCU's don't support 1.5 stop bits */
|
|
#ifdef LL_USART_STOPBITS_1_5
|
|
case UART_CFG_STOP_BITS_1_5:
|
|
return LL_USART_STOPBITS_1_5;
|
|
#endif /* LL_USART_STOPBITS_1_5 */
|
|
case UART_CFG_STOP_BITS_2:
|
|
default:
|
|
return LL_USART_STOPBITS_2;
|
|
}
|
|
}
|
|
|
|
static inline enum uart_config_stop_bits uart_stm32_ll2cfg_stopbits(uint32_t sb)
|
|
{
|
|
switch (sb) {
|
|
/* Some MCU's don't support 0.5 stop bits */
|
|
#ifdef LL_USART_STOPBITS_0_5
|
|
case LL_USART_STOPBITS_0_5:
|
|
return UART_CFG_STOP_BITS_0_5;
|
|
#endif /* LL_USART_STOPBITS_0_5 */
|
|
case LL_USART_STOPBITS_1:
|
|
return UART_CFG_STOP_BITS_1;
|
|
/* Some MCU's don't support 1.5 stop bits */
|
|
#ifdef LL_USART_STOPBITS_1_5
|
|
case LL_USART_STOPBITS_1_5:
|
|
return UART_CFG_STOP_BITS_1_5;
|
|
#endif /* LL_USART_STOPBITS_1_5 */
|
|
case LL_USART_STOPBITS_2:
|
|
default:
|
|
return UART_CFG_STOP_BITS_2;
|
|
}
|
|
}
|
|
|
|
static inline uint32_t uart_stm32_cfg2ll_databits(enum uart_config_data_bits db,
|
|
enum uart_config_parity p)
|
|
{
|
|
switch (db) {
|
|
/* Some MCU's don't support 7B or 9B datawidth */
|
|
#ifdef LL_USART_DATAWIDTH_7B
|
|
case UART_CFG_DATA_BITS_7:
|
|
if (p == UART_CFG_PARITY_NONE) {
|
|
return LL_USART_DATAWIDTH_7B;
|
|
} else {
|
|
return LL_USART_DATAWIDTH_8B;
|
|
}
|
|
#endif /* LL_USART_DATAWIDTH_7B */
|
|
#ifdef LL_USART_DATAWIDTH_9B
|
|
case UART_CFG_DATA_BITS_9:
|
|
return LL_USART_DATAWIDTH_9B;
|
|
#endif /* LL_USART_DATAWIDTH_9B */
|
|
case UART_CFG_DATA_BITS_8:
|
|
default:
|
|
if (p == UART_CFG_PARITY_NONE) {
|
|
return LL_USART_DATAWIDTH_8B;
|
|
#ifdef LL_USART_DATAWIDTH_9B
|
|
} else {
|
|
return LL_USART_DATAWIDTH_9B;
|
|
#endif
|
|
}
|
|
return LL_USART_DATAWIDTH_8B;
|
|
}
|
|
}
|
|
|
|
static inline enum uart_config_data_bits uart_stm32_ll2cfg_databits(uint32_t db,
|
|
uint32_t p)
|
|
{
|
|
switch (db) {
|
|
/* Some MCU's don't support 7B or 9B datawidth */
|
|
#ifdef LL_USART_DATAWIDTH_7B
|
|
case LL_USART_DATAWIDTH_7B:
|
|
if (p == LL_USART_PARITY_NONE) {
|
|
return UART_CFG_DATA_BITS_7;
|
|
} else {
|
|
return UART_CFG_DATA_BITS_6;
|
|
}
|
|
#endif /* LL_USART_DATAWIDTH_7B */
|
|
#ifdef LL_USART_DATAWIDTH_9B
|
|
case LL_USART_DATAWIDTH_9B:
|
|
if (p == LL_USART_PARITY_NONE) {
|
|
return UART_CFG_DATA_BITS_9;
|
|
} else {
|
|
return UART_CFG_DATA_BITS_8;
|
|
}
|
|
#endif /* LL_USART_DATAWIDTH_9B */
|
|
case LL_USART_DATAWIDTH_8B:
|
|
default:
|
|
if (p == LL_USART_PARITY_NONE) {
|
|
return UART_CFG_DATA_BITS_8;
|
|
} else {
|
|
return UART_CFG_DATA_BITS_7;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Get LL hardware flow control define from
|
|
* Zephyr hardware flow control option.
|
|
* @note Supports only UART_CFG_FLOW_CTRL_RTS_CTS.
|
|
* @param fc: Zephyr hardware flow control option.
|
|
* @retval LL_USART_HWCONTROL_RTS_CTS, or LL_USART_HWCONTROL_NONE.
|
|
*/
|
|
static inline uint32_t uart_stm32_cfg2ll_hwctrl(enum uart_config_flow_control fc)
|
|
{
|
|
if (fc == UART_CFG_FLOW_CTRL_RTS_CTS) {
|
|
return LL_USART_HWCONTROL_RTS_CTS;
|
|
}
|
|
|
|
return LL_USART_HWCONTROL_NONE;
|
|
}
|
|
|
|
/**
|
|
* @brief Get Zephyr hardware flow control option from
|
|
* LL hardware flow control define.
|
|
* @note Supports only LL_USART_HWCONTROL_RTS_CTS.
|
|
* @param fc: LL hardware flow control definition.
|
|
* @retval UART_CFG_FLOW_CTRL_RTS_CTS, or UART_CFG_FLOW_CTRL_NONE.
|
|
*/
|
|
static inline enum uart_config_flow_control uart_stm32_ll2cfg_hwctrl(uint32_t fc)
|
|
{
|
|
if (fc == LL_USART_HWCONTROL_RTS_CTS) {
|
|
return UART_CFG_FLOW_CTRL_RTS_CTS;
|
|
}
|
|
|
|
return UART_CFG_FLOW_CTRL_NONE;
|
|
}
|
|
|
|
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
|
|
static int uart_stm32_configure(const struct device *dev,
|
|
const struct uart_config *cfg)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
const uint32_t parity = uart_stm32_cfg2ll_parity(cfg->parity);
|
|
const uint32_t stopbits = uart_stm32_cfg2ll_stopbits(cfg->stop_bits);
|
|
const uint32_t databits = uart_stm32_cfg2ll_databits(cfg->data_bits,
|
|
cfg->parity);
|
|
const uint32_t flowctrl = uart_stm32_cfg2ll_hwctrl(cfg->flow_ctrl);
|
|
|
|
/* Hardware doesn't support mark or space parity */
|
|
if ((cfg->parity == UART_CFG_PARITY_MARK) ||
|
|
(cfg->parity == UART_CFG_PARITY_SPACE)) {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/* Driver does not supports parity + 9 databits */
|
|
if ((cfg->parity != UART_CFG_PARITY_NONE) &&
|
|
(cfg->data_bits == UART_CFG_DATA_BITS_9)) {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
#if defined(LL_USART_STOPBITS_0_5) && HAS_LPUART_1
|
|
if (IS_LPUART_INSTANCE(UartInstance) &&
|
|
(cfg->stop_bits == UART_CFG_STOP_BITS_0_5)) {
|
|
return -ENOTSUP;
|
|
}
|
|
#else
|
|
if (cfg->stop_bits == UART_CFG_STOP_BITS_0_5) {
|
|
return -ENOTSUP;
|
|
}
|
|
#endif
|
|
|
|
#if defined(LL_USART_STOPBITS_1_5) && HAS_LPUART_1
|
|
if (IS_LPUART_INSTANCE(UartInstance) &&
|
|
(cfg->stop_bits == UART_CFG_STOP_BITS_1_5)) {
|
|
return -ENOTSUP;
|
|
}
|
|
#else
|
|
if (cfg->stop_bits == UART_CFG_STOP_BITS_1_5) {
|
|
return -ENOTSUP;
|
|
}
|
|
#endif
|
|
|
|
/* Driver doesn't support 5 or 6 databits and potentially 7 or 9 */
|
|
if ((cfg->data_bits == UART_CFG_DATA_BITS_5) ||
|
|
(cfg->data_bits == UART_CFG_DATA_BITS_6)
|
|
#ifndef LL_USART_DATAWIDTH_7B
|
|
|| (cfg->data_bits == UART_CFG_DATA_BITS_7)
|
|
#endif /* LL_USART_DATAWIDTH_7B */
|
|
|| (cfg->data_bits == UART_CFG_DATA_BITS_9)) {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/* Driver supports only RTS CTS flow control */
|
|
if (cfg->flow_ctrl != UART_CFG_FLOW_CTRL_NONE) {
|
|
if (!IS_UART_HWFLOW_INSTANCE(UartInstance) ||
|
|
UART_CFG_FLOW_CTRL_RTS_CTS != cfg->flow_ctrl) {
|
|
return -ENOTSUP;
|
|
}
|
|
}
|
|
|
|
LL_USART_Disable(UartInstance);
|
|
|
|
if (parity != uart_stm32_get_parity(dev)) {
|
|
uart_stm32_set_parity(dev, parity);
|
|
}
|
|
|
|
if (stopbits != uart_stm32_get_stopbits(dev)) {
|
|
uart_stm32_set_stopbits(dev, stopbits);
|
|
}
|
|
|
|
if (databits != uart_stm32_get_databits(dev)) {
|
|
uart_stm32_set_databits(dev, databits);
|
|
}
|
|
|
|
if (flowctrl != uart_stm32_get_hwctrl(dev)) {
|
|
uart_stm32_set_hwctrl(dev, flowctrl);
|
|
}
|
|
|
|
if (cfg->baudrate != data->baud_rate) {
|
|
uart_stm32_set_baudrate(dev, cfg->baudrate);
|
|
data->baud_rate = cfg->baudrate;
|
|
}
|
|
|
|
LL_USART_Enable(UartInstance);
|
|
return 0;
|
|
};
|
|
|
|
static int uart_stm32_config_get(const struct device *dev,
|
|
struct uart_config *cfg)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
|
|
cfg->baudrate = data->baud_rate;
|
|
cfg->parity = uart_stm32_ll2cfg_parity(uart_stm32_get_parity(dev));
|
|
cfg->stop_bits = uart_stm32_ll2cfg_stopbits(
|
|
uart_stm32_get_stopbits(dev));
|
|
cfg->data_bits = uart_stm32_ll2cfg_databits(
|
|
uart_stm32_get_databits(dev), uart_stm32_get_parity(dev));
|
|
cfg->flow_ctrl = uart_stm32_ll2cfg_hwctrl(
|
|
uart_stm32_get_hwctrl(dev));
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
|
|
|
|
static int uart_stm32_poll_in(const struct device *dev, unsigned char *c)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
|
|
/* Clear overrun error flag */
|
|
if (LL_USART_IsActiveFlag_ORE(UartInstance)) {
|
|
LL_USART_ClearFlag_ORE(UartInstance);
|
|
}
|
|
|
|
if (!LL_USART_IsActiveFlag_RXNE(UartInstance)) {
|
|
return -1;
|
|
}
|
|
|
|
*c = (unsigned char)LL_USART_ReceiveData8(UartInstance);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void uart_stm32_poll_out(const struct device *dev,
|
|
unsigned char c)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
#ifdef CONFIG_PM
|
|
struct uart_stm32_data *data = dev->data;
|
|
#endif
|
|
int key;
|
|
|
|
/* Wait for TXE flag to be raised
|
|
* When TXE flag is raised, we lock interrupts to prevent interrupts (notably that of usart)
|
|
* or thread switch. Then, we can safely send our character. The character sent will be
|
|
* interlaced with the characters potentially send with interrupt transmission API
|
|
*/
|
|
while (1) {
|
|
if (LL_USART_IsActiveFlag_TXE(UartInstance)) {
|
|
key = irq_lock();
|
|
if (LL_USART_IsActiveFlag_TXE(UartInstance)) {
|
|
break;
|
|
}
|
|
irq_unlock(key);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
|
|
/* If an interrupt transmission is in progress, the pm constraint is already managed by the
|
|
* call of uart_stm32_irq_tx_[en|dis]able
|
|
*/
|
|
if (!data->tx_poll_stream_on && !data->tx_int_stream_on) {
|
|
data->tx_poll_stream_on = true;
|
|
|
|
/* Don't allow system to suspend until stream
|
|
* transmission has completed
|
|
*/
|
|
uart_stm32_pm_constraint_set(dev);
|
|
|
|
/* Enable TC interrupt so we can release suspend
|
|
* constraint when done
|
|
*/
|
|
LL_USART_EnableIT_TC(UartInstance);
|
|
}
|
|
#endif /* CONFIG_PM */
|
|
|
|
LL_USART_TransmitData8(UartInstance, (uint8_t)c);
|
|
irq_unlock(key);
|
|
}
|
|
|
|
static int uart_stm32_err_check(const struct device *dev)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
uint32_t err = 0U;
|
|
|
|
/* Check for errors, but don't clear them here.
|
|
* Some SoC clear all error flags when at least
|
|
* one is cleared. (e.g. F4X, F1X, and F2X)
|
|
*/
|
|
if (LL_USART_IsActiveFlag_ORE(UartInstance)) {
|
|
err |= UART_ERROR_OVERRUN;
|
|
}
|
|
|
|
if (LL_USART_IsActiveFlag_PE(UartInstance)) {
|
|
err |= UART_ERROR_PARITY;
|
|
}
|
|
|
|
if (LL_USART_IsActiveFlag_FE(UartInstance)) {
|
|
err |= UART_ERROR_FRAMING;
|
|
}
|
|
|
|
if (err & UART_ERROR_OVERRUN) {
|
|
LL_USART_ClearFlag_ORE(UartInstance);
|
|
}
|
|
|
|
if (err & UART_ERROR_PARITY) {
|
|
LL_USART_ClearFlag_PE(UartInstance);
|
|
}
|
|
|
|
if (err & UART_ERROR_FRAMING) {
|
|
LL_USART_ClearFlag_FE(UartInstance);
|
|
}
|
|
|
|
/* Clear noise error as well,
|
|
* it is not represented by the errors enum
|
|
*/
|
|
LL_USART_ClearFlag_NE(UartInstance);
|
|
|
|
return err;
|
|
}
|
|
|
|
static inline void __uart_stm32_get_clock(const struct device *dev)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
const struct device *clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
|
|
|
|
data->clock = clk;
|
|
}
|
|
|
|
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
|
|
|
|
static int uart_stm32_fifo_fill(const struct device *dev,
|
|
const uint8_t *tx_data,
|
|
int size)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
uint8_t num_tx = 0U;
|
|
int key;
|
|
|
|
if (!LL_USART_IsActiveFlag_TXE(UartInstance)) {
|
|
return num_tx;
|
|
}
|
|
|
|
/* Lock interrupts to prevent nested interrupts or thread switch */
|
|
key = irq_lock();
|
|
|
|
while ((size - num_tx > 0) &&
|
|
LL_USART_IsActiveFlag_TXE(UartInstance)) {
|
|
/* TXE flag will be cleared with byte write to DR|RDR register */
|
|
|
|
/* Send a character (8bit , parity none) */
|
|
LL_USART_TransmitData8(UartInstance, tx_data[num_tx++]);
|
|
}
|
|
|
|
irq_unlock(key);
|
|
|
|
return num_tx;
|
|
}
|
|
|
|
static int uart_stm32_fifo_read(const struct device *dev, uint8_t *rx_data,
|
|
const int size)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
uint8_t num_rx = 0U;
|
|
|
|
while ((size - num_rx > 0) &&
|
|
LL_USART_IsActiveFlag_RXNE(UartInstance)) {
|
|
/* RXNE flag will be cleared upon read from DR|RDR register */
|
|
|
|
/* Receive a character (8bit , parity none) */
|
|
rx_data[num_rx++] = LL_USART_ReceiveData8(UartInstance);
|
|
|
|
/* Clear overrun error flag */
|
|
if (LL_USART_IsActiveFlag_ORE(UartInstance)) {
|
|
LL_USART_ClearFlag_ORE(UartInstance);
|
|
}
|
|
}
|
|
|
|
return num_rx;
|
|
}
|
|
|
|
static void uart_stm32_irq_tx_enable(const struct device *dev)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
#ifdef CONFIG_PM
|
|
struct uart_stm32_data *data = dev->data;
|
|
int key;
|
|
#endif
|
|
|
|
#ifdef CONFIG_PM
|
|
key = irq_lock();
|
|
data->tx_poll_stream_on = false;
|
|
data->tx_int_stream_on = true;
|
|
uart_stm32_pm_constraint_set(dev);
|
|
#endif
|
|
LL_USART_EnableIT_TC(UartInstance);
|
|
|
|
#ifdef CONFIG_PM
|
|
irq_unlock(key);
|
|
#endif
|
|
}
|
|
|
|
static void uart_stm32_irq_tx_disable(const struct device *dev)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
#ifdef CONFIG_PM
|
|
struct uart_stm32_data *data = dev->data;
|
|
int key;
|
|
|
|
key = irq_lock();
|
|
#endif
|
|
|
|
LL_USART_DisableIT_TC(UartInstance);
|
|
|
|
#ifdef CONFIG_PM
|
|
data->tx_int_stream_on = false;
|
|
uart_stm32_pm_constraint_release(dev);
|
|
#endif
|
|
|
|
#ifdef CONFIG_PM
|
|
irq_unlock(key);
|
|
#endif
|
|
}
|
|
|
|
static int uart_stm32_irq_tx_ready(const struct device *dev)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
|
|
return LL_USART_IsActiveFlag_TXE(UartInstance) &&
|
|
LL_USART_IsEnabledIT_TC(UartInstance);
|
|
}
|
|
|
|
static int uart_stm32_irq_tx_complete(const struct device *dev)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
|
|
return LL_USART_IsActiveFlag_TC(UartInstance);
|
|
}
|
|
|
|
static void uart_stm32_irq_rx_enable(const struct device *dev)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
|
|
LL_USART_EnableIT_RXNE(UartInstance);
|
|
}
|
|
|
|
static void uart_stm32_irq_rx_disable(const struct device *dev)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
|
|
LL_USART_DisableIT_RXNE(UartInstance);
|
|
}
|
|
|
|
static int uart_stm32_irq_rx_ready(const struct device *dev)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
|
|
return LL_USART_IsActiveFlag_RXNE(UartInstance);
|
|
}
|
|
|
|
static void uart_stm32_irq_err_enable(const struct device *dev)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
|
|
/* Enable FE, ORE interruptions */
|
|
LL_USART_EnableIT_ERROR(UartInstance);
|
|
#if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT)
|
|
/* Enable Line break detection */
|
|
if (IS_UART_LIN_INSTANCE(UartInstance)) {
|
|
LL_USART_EnableIT_LBD(UartInstance);
|
|
}
|
|
#endif
|
|
/* Enable parity error interruption */
|
|
LL_USART_EnableIT_PE(UartInstance);
|
|
}
|
|
|
|
static void uart_stm32_irq_err_disable(const struct device *dev)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
|
|
/* Disable FE, ORE interruptions */
|
|
LL_USART_DisableIT_ERROR(UartInstance);
|
|
#if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT)
|
|
/* Disable Line break detection */
|
|
if (IS_UART_LIN_INSTANCE(UartInstance)) {
|
|
LL_USART_DisableIT_LBD(UartInstance);
|
|
}
|
|
#endif
|
|
/* Disable parity error interruption */
|
|
LL_USART_DisableIT_PE(UartInstance);
|
|
}
|
|
|
|
static int uart_stm32_irq_is_pending(const struct device *dev)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
|
|
return ((LL_USART_IsActiveFlag_RXNE(UartInstance) &&
|
|
LL_USART_IsEnabledIT_RXNE(UartInstance)) ||
|
|
(LL_USART_IsActiveFlag_TC(UartInstance) &&
|
|
LL_USART_IsEnabledIT_TC(UartInstance)));
|
|
}
|
|
|
|
static int uart_stm32_irq_update(const struct device *dev)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static void uart_stm32_irq_callback_set(const struct device *dev,
|
|
uart_irq_callback_user_data_t cb,
|
|
void *cb_data)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
|
|
data->user_cb = cb;
|
|
data->user_data = cb_data;
|
|
}
|
|
|
|
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
|
|
|
|
#ifdef CONFIG_UART_ASYNC_API
|
|
|
|
static inline void async_user_callback(struct uart_stm32_data *data,
|
|
struct uart_event *event)
|
|
{
|
|
if (data->async_cb) {
|
|
data->async_cb(data->uart_dev, event, data->async_user_data);
|
|
}
|
|
}
|
|
|
|
static inline void async_evt_rx_rdy(struct uart_stm32_data *data)
|
|
{
|
|
LOG_DBG("rx_rdy: (%d %d)", data->dma_rx.offset, data->dma_rx.counter);
|
|
|
|
struct uart_event event = {
|
|
.type = UART_RX_RDY,
|
|
.data.rx.buf = data->dma_rx.buffer,
|
|
.data.rx.len = data->dma_rx.counter - data->dma_rx.offset,
|
|
.data.rx.offset = data->dma_rx.offset
|
|
};
|
|
|
|
/* update the current pos for new data */
|
|
data->dma_rx.offset = data->dma_rx.counter;
|
|
|
|
/* send event only for new data */
|
|
if (event.data.rx.len > 0) {
|
|
async_user_callback(data, &event);
|
|
}
|
|
}
|
|
|
|
static inline void async_evt_rx_err(struct uart_stm32_data *data, int err_code)
|
|
{
|
|
LOG_DBG("rx error: %d", err_code);
|
|
|
|
struct uart_event event = {
|
|
.type = UART_RX_STOPPED,
|
|
.data.rx_stop.reason = err_code,
|
|
.data.rx_stop.data.len = data->dma_rx.counter,
|
|
.data.rx_stop.data.offset = 0,
|
|
.data.rx_stop.data.buf = data->dma_rx.buffer
|
|
};
|
|
|
|
async_user_callback(data, &event);
|
|
}
|
|
|
|
static inline void async_evt_tx_done(struct uart_stm32_data *data)
|
|
{
|
|
LOG_DBG("tx done: %d", data->dma_tx.counter);
|
|
|
|
struct uart_event event = {
|
|
.type = UART_TX_DONE,
|
|
.data.tx.buf = data->dma_tx.buffer,
|
|
.data.tx.len = data->dma_tx.counter
|
|
};
|
|
|
|
/* Reset tx buffer */
|
|
data->dma_tx.buffer_length = 0;
|
|
data->dma_tx.counter = 0;
|
|
|
|
async_user_callback(data, &event);
|
|
}
|
|
|
|
static inline void async_evt_tx_abort(struct uart_stm32_data *data)
|
|
{
|
|
LOG_DBG("tx abort: %d", data->dma_tx.counter);
|
|
|
|
struct uart_event event = {
|
|
.type = UART_TX_ABORTED,
|
|
.data.tx.buf = data->dma_tx.buffer,
|
|
.data.tx.len = data->dma_tx.counter
|
|
};
|
|
|
|
/* Reset tx buffer */
|
|
data->dma_tx.buffer_length = 0;
|
|
data->dma_tx.counter = 0;
|
|
|
|
async_user_callback(data, &event);
|
|
}
|
|
|
|
static inline void async_evt_rx_buf_request(struct uart_stm32_data *data)
|
|
{
|
|
struct uart_event evt = {
|
|
.type = UART_RX_BUF_REQUEST,
|
|
};
|
|
|
|
async_user_callback(data, &evt);
|
|
}
|
|
|
|
static inline void async_evt_rx_buf_release(struct uart_stm32_data *data)
|
|
{
|
|
struct uart_event evt = {
|
|
.type = UART_RX_BUF_RELEASED,
|
|
.data.rx_buf.buf = data->dma_rx.buffer,
|
|
};
|
|
|
|
async_user_callback(data, &evt);
|
|
}
|
|
|
|
static inline void async_timer_start(struct k_work_delayable *work,
|
|
int32_t timeout)
|
|
{
|
|
if ((timeout != SYS_FOREVER_US) && (timeout != 0)) {
|
|
/* start timer */
|
|
LOG_DBG("async timer started for %d us", timeout);
|
|
k_work_reschedule(work, K_USEC(timeout));
|
|
}
|
|
}
|
|
|
|
static void uart_stm32_dma_rx_flush(const struct device *dev)
|
|
{
|
|
struct dma_status stat;
|
|
struct uart_stm32_data *data = dev->data;
|
|
|
|
if (dma_get_status(data->dma_rx.dma_dev,
|
|
data->dma_rx.dma_channel, &stat) == 0) {
|
|
size_t rx_rcv_len = data->dma_rx.buffer_length -
|
|
stat.pending_length;
|
|
if (rx_rcv_len > data->dma_rx.offset) {
|
|
data->dma_rx.counter = rx_rcv_len;
|
|
|
|
async_evt_rx_rdy(data);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* CONFIG_UART_ASYNC_API */
|
|
|
|
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || \
|
|
defined(CONFIG_UART_ASYNC_API) || \
|
|
defined(CONFIG_PM)
|
|
|
|
static void uart_stm32_isr(const struct device *dev)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
#if defined(CONFIG_PM) || defined(CONFIG_UART_ASYNC_API)
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
#endif
|
|
|
|
#ifdef CONFIG_PM
|
|
if (LL_USART_IsEnabledIT_TC(UartInstance) &&
|
|
LL_USART_IsActiveFlag_TC(UartInstance)) {
|
|
|
|
if (data->tx_poll_stream_on) {
|
|
/* A poll stream transmition just completed,
|
|
* allow system to suspend
|
|
*/
|
|
LL_USART_DisableIT_TC(UartInstance);
|
|
data->tx_poll_stream_on = false;
|
|
uart_stm32_pm_constraint_release(dev);
|
|
}
|
|
/* Stream transmition was either async or IRQ based,
|
|
* constraint will be released at the same time TC IT
|
|
* is disabled
|
|
*/
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
|
|
if (data->user_cb) {
|
|
data->user_cb(dev, data->user_data);
|
|
}
|
|
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
|
|
|
|
#ifdef CONFIG_UART_ASYNC_API
|
|
if (LL_USART_IsEnabledIT_IDLE(UartInstance) &&
|
|
LL_USART_IsActiveFlag_IDLE(UartInstance)) {
|
|
|
|
LL_USART_ClearFlag_IDLE(UartInstance);
|
|
|
|
LOG_DBG("idle interrupt occurred");
|
|
|
|
/* Start the RX timer */
|
|
async_timer_start(&data->dma_rx.timeout_work,
|
|
data->dma_rx.timeout);
|
|
|
|
if (data->dma_rx.timeout == 0) {
|
|
uart_stm32_dma_rx_flush(dev);
|
|
}
|
|
} else if (LL_USART_IsEnabledIT_TC(UartInstance) &&
|
|
LL_USART_IsActiveFlag_TC(UartInstance)) {
|
|
|
|
LL_USART_DisableIT_TC(UartInstance);
|
|
LL_USART_ClearFlag_TC(UartInstance);
|
|
/* Generate TX_DONE event when transmission is done */
|
|
async_evt_tx_done(data);
|
|
|
|
#ifdef CONFIG_PM
|
|
uart_stm32_pm_constraint_release(dev);
|
|
#endif
|
|
} else if (LL_USART_IsEnabledIT_RXNE(UartInstance) &&
|
|
LL_USART_IsActiveFlag_RXNE(UartInstance)) {
|
|
#ifdef USART_SR_RXNE
|
|
/* clear the RXNE flag, because Rx data was not read */
|
|
LL_USART_ClearFlag_RXNE(UartInstance);
|
|
#else
|
|
/* clear the RXNE by flushing the fifo, because Rx data was not read */
|
|
LL_USART_RequestRxDataFlush(UartInstance);
|
|
#endif /* USART_SR_RXNE */
|
|
}
|
|
|
|
/* Clear errors */
|
|
uart_stm32_err_check(dev);
|
|
#endif /* CONFIG_UART_ASYNC_API */
|
|
}
|
|
#endif /* CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API || CONFIG_PM */
|
|
|
|
#ifdef CONFIG_UART_ASYNC_API
|
|
|
|
static int uart_stm32_async_callback_set(const struct device *dev,
|
|
uart_callback_t callback,
|
|
void *user_data)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
|
|
data->async_cb = callback;
|
|
data->async_user_data = user_data;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void uart_stm32_dma_tx_enable(const struct device *dev)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
|
|
LL_USART_EnableDMAReq_TX(UartInstance);
|
|
}
|
|
|
|
static inline void uart_stm32_dma_tx_disable(const struct device *dev)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
|
|
LL_USART_DisableDMAReq_TX(UartInstance);
|
|
}
|
|
|
|
static inline void uart_stm32_dma_rx_enable(const struct device *dev)
|
|
{
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
struct uart_stm32_data *data = dev->data;
|
|
|
|
LL_USART_EnableDMAReq_RX(UartInstance);
|
|
|
|
data->dma_rx.enabled = true;
|
|
}
|
|
|
|
static inline void uart_stm32_dma_rx_disable(const struct device *dev)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
|
|
data->dma_rx.enabled = false;
|
|
}
|
|
|
|
static int uart_stm32_async_rx_disable(const struct device *dev)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
struct uart_event disabled_event = {
|
|
.type = UART_RX_DISABLED
|
|
};
|
|
|
|
if (!data->dma_rx.enabled) {
|
|
async_user_callback(data, &disabled_event);
|
|
return -EFAULT;
|
|
}
|
|
|
|
LL_USART_DisableIT_IDLE(UartInstance);
|
|
|
|
uart_stm32_dma_rx_flush(dev);
|
|
|
|
async_evt_rx_buf_release(data);
|
|
|
|
uart_stm32_dma_rx_disable(dev);
|
|
|
|
(void)k_work_cancel_delayable(&data->dma_rx.timeout_work);
|
|
|
|
dma_stop(data->dma_rx.dma_dev, data->dma_rx.dma_channel);
|
|
|
|
data->rx_next_buffer = NULL;
|
|
data->rx_next_buffer_len = 0;
|
|
|
|
/* When async rx is disabled, enable interruptable instance of uart to function normally*/
|
|
LL_USART_EnableIT_RXNE(UartInstance);
|
|
|
|
LOG_DBG("rx: disabled");
|
|
|
|
async_user_callback(data, &disabled_event);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void uart_stm32_dma_tx_cb(const struct device *dma_dev, void *user_data,
|
|
uint32_t channel, int status)
|
|
{
|
|
const struct device *uart_dev = user_data;
|
|
struct uart_stm32_data *data = uart_dev->data;
|
|
struct dma_status stat;
|
|
unsigned int key = irq_lock();
|
|
|
|
/* Disable TX */
|
|
uart_stm32_dma_tx_disable(uart_dev);
|
|
|
|
(void)k_work_cancel_delayable(&data->dma_tx.timeout_work);
|
|
|
|
if (!dma_get_status(data->dma_tx.dma_dev,
|
|
data->dma_tx.dma_channel, &stat)) {
|
|
data->dma_tx.counter = data->dma_tx.buffer_length -
|
|
stat.pending_length;
|
|
}
|
|
|
|
data->dma_tx.buffer_length = 0;
|
|
|
|
irq_unlock(key);
|
|
}
|
|
|
|
static void uart_stm32_dma_replace_buffer(const struct device *dev)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
|
|
/* Replace the buffer and relod the DMA */
|
|
LOG_DBG("Replacing RX buffer: %d", data->rx_next_buffer_len);
|
|
|
|
/* reload DMA */
|
|
data->dma_rx.offset = 0;
|
|
data->dma_rx.counter = 0;
|
|
data->dma_rx.buffer = data->rx_next_buffer;
|
|
data->dma_rx.buffer_length = data->rx_next_buffer_len;
|
|
data->dma_rx.blk_cfg.block_size = data->dma_rx.buffer_length;
|
|
data->dma_rx.blk_cfg.dest_address = (uint32_t)data->dma_rx.buffer;
|
|
data->rx_next_buffer = NULL;
|
|
data->rx_next_buffer_len = 0;
|
|
|
|
dma_reload(data->dma_rx.dma_dev, data->dma_rx.dma_channel,
|
|
data->dma_rx.blk_cfg.source_address,
|
|
data->dma_rx.blk_cfg.dest_address,
|
|
data->dma_rx.blk_cfg.block_size);
|
|
|
|
dma_start(data->dma_rx.dma_dev, data->dma_rx.dma_channel);
|
|
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
|
|
LL_USART_ClearFlag_IDLE(UartInstance);
|
|
|
|
/* Request next buffer */
|
|
async_evt_rx_buf_request(data);
|
|
}
|
|
|
|
void uart_stm32_dma_rx_cb(const struct device *dma_dev, void *user_data,
|
|
uint32_t channel, int status)
|
|
{
|
|
const struct device *uart_dev = user_data;
|
|
struct uart_stm32_data *data = uart_dev->data;
|
|
|
|
if (status != 0) {
|
|
async_evt_rx_err(data, status);
|
|
return;
|
|
}
|
|
|
|
(void)k_work_cancel_delayable(&data->dma_rx.timeout_work);
|
|
|
|
/* true since this functions occurs when buffer if full */
|
|
data->dma_rx.counter = data->dma_rx.buffer_length;
|
|
|
|
async_evt_rx_rdy(data);
|
|
|
|
if (data->rx_next_buffer != NULL) {
|
|
async_evt_rx_buf_release(data);
|
|
|
|
/* replace the buffer when the current
|
|
* is full and not the same as the next
|
|
* one.
|
|
*/
|
|
uart_stm32_dma_replace_buffer(uart_dev);
|
|
} else {
|
|
/* Buffer full without valid next buffer,
|
|
* an UART_RX_DISABLED event must be generated,
|
|
* but uart_stm32_async_rx_disable() cannot be
|
|
* called in ISR context. So force the RX timeout
|
|
* to minimum value and let the RX timeout to do the job.
|
|
*/
|
|
k_work_reschedule(&data->dma_rx.timeout_work, K_TICKS(1));
|
|
}
|
|
}
|
|
|
|
static int uart_stm32_async_tx(const struct device *dev,
|
|
const uint8_t *tx_data, size_t buf_size, int32_t timeout)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
int ret;
|
|
|
|
if (data->dma_tx.dma_dev == NULL) {
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (data->dma_tx.buffer_length != 0) {
|
|
return -EBUSY;
|
|
}
|
|
|
|
data->dma_tx.buffer = (uint8_t *)tx_data;
|
|
data->dma_tx.buffer_length = buf_size;
|
|
data->dma_tx.timeout = timeout;
|
|
|
|
LOG_DBG("tx: l=%d", data->dma_tx.buffer_length);
|
|
|
|
/* Clear TC flag */
|
|
LL_USART_ClearFlag_TC(UartInstance);
|
|
|
|
/* Enable TC interrupt so we can signal correct TX done */
|
|
LL_USART_EnableIT_TC(UartInstance);
|
|
|
|
/* set source address */
|
|
data->dma_tx.blk_cfg.source_address = (uint32_t)data->dma_tx.buffer;
|
|
data->dma_tx.blk_cfg.block_size = data->dma_tx.buffer_length;
|
|
|
|
ret = dma_config(data->dma_tx.dma_dev, data->dma_tx.dma_channel,
|
|
&data->dma_tx.dma_cfg);
|
|
|
|
if (ret != 0) {
|
|
LOG_ERR("dma tx config error!");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (dma_start(data->dma_tx.dma_dev, data->dma_tx.dma_channel)) {
|
|
LOG_ERR("UART err: TX DMA start failed!");
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Start TX timer */
|
|
async_timer_start(&data->dma_tx.timeout_work, data->dma_tx.timeout);
|
|
|
|
#ifdef CONFIG_PM
|
|
|
|
/* Do not allow system to suspend until transmission has completed */
|
|
uart_stm32_pm_constraint_set(dev);
|
|
#endif
|
|
|
|
/* Enable TX DMA requests */
|
|
uart_stm32_dma_tx_enable(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int uart_stm32_async_rx_enable(const struct device *dev,
|
|
uint8_t *rx_buf, size_t buf_size, int32_t timeout)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
int ret;
|
|
|
|
if (data->dma_rx.dma_dev == NULL) {
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (data->dma_rx.enabled) {
|
|
LOG_WRN("RX was already enabled");
|
|
return -EBUSY;
|
|
}
|
|
|
|
data->dma_rx.offset = 0;
|
|
data->dma_rx.buffer = rx_buf;
|
|
data->dma_rx.buffer_length = buf_size;
|
|
data->dma_rx.counter = 0;
|
|
data->dma_rx.timeout = timeout;
|
|
|
|
/* Disable RX interrupts to let DMA to handle it */
|
|
LL_USART_DisableIT_RXNE(UartInstance);
|
|
|
|
data->dma_rx.blk_cfg.block_size = buf_size;
|
|
data->dma_rx.blk_cfg.dest_address = (uint32_t)data->dma_rx.buffer;
|
|
|
|
ret = dma_config(data->dma_rx.dma_dev, data->dma_rx.dma_channel,
|
|
&data->dma_rx.dma_cfg);
|
|
|
|
if (ret != 0) {
|
|
LOG_ERR("UART ERR: RX DMA config failed!");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (dma_start(data->dma_rx.dma_dev, data->dma_rx.dma_channel)) {
|
|
LOG_ERR("UART ERR: RX DMA start failed!");
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Enable RX DMA requests */
|
|
uart_stm32_dma_rx_enable(dev);
|
|
|
|
/* Enable IRQ IDLE to define the end of a
|
|
* RX DMA transaction.
|
|
*/
|
|
LL_USART_ClearFlag_IDLE(UartInstance);
|
|
LL_USART_EnableIT_IDLE(UartInstance);
|
|
|
|
LL_USART_EnableIT_ERROR(UartInstance);
|
|
|
|
/* Request next buffer */
|
|
async_evt_rx_buf_request(data);
|
|
|
|
LOG_DBG("async rx enabled");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int uart_stm32_async_tx_abort(const struct device *dev)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
size_t tx_buffer_length = data->dma_tx.buffer_length;
|
|
struct dma_status stat;
|
|
|
|
if (tx_buffer_length == 0) {
|
|
return -EFAULT;
|
|
}
|
|
|
|
(void)k_work_cancel_delayable(&data->dma_tx.timeout_work);
|
|
if (!dma_get_status(data->dma_tx.dma_dev,
|
|
data->dma_tx.dma_channel, &stat)) {
|
|
data->dma_tx.counter = tx_buffer_length - stat.pending_length;
|
|
}
|
|
|
|
dma_stop(data->dma_tx.dma_dev, data->dma_tx.dma_channel);
|
|
async_evt_tx_abort(data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void uart_stm32_async_rx_timeout(struct k_work *work)
|
|
{
|
|
struct uart_dma_stream *rx_stream = CONTAINER_OF(work,
|
|
struct uart_dma_stream, timeout_work);
|
|
struct uart_stm32_data *data = CONTAINER_OF(rx_stream,
|
|
struct uart_stm32_data, dma_rx);
|
|
const struct device *dev = data->uart_dev;
|
|
|
|
LOG_DBG("rx timeout");
|
|
|
|
if (data->dma_rx.counter == data->dma_rx.buffer_length) {
|
|
uart_stm32_async_rx_disable(dev);
|
|
} else {
|
|
uart_stm32_dma_rx_flush(dev);
|
|
}
|
|
}
|
|
|
|
static void uart_stm32_async_tx_timeout(struct k_work *work)
|
|
{
|
|
struct uart_dma_stream *tx_stream = CONTAINER_OF(work,
|
|
struct uart_dma_stream, timeout_work);
|
|
struct uart_stm32_data *data = CONTAINER_OF(tx_stream,
|
|
struct uart_stm32_data, dma_tx);
|
|
const struct device *dev = data->uart_dev;
|
|
|
|
uart_stm32_async_tx_abort(dev);
|
|
|
|
LOG_DBG("tx: async timeout");
|
|
}
|
|
|
|
static int uart_stm32_async_rx_buf_rsp(const struct device *dev, uint8_t *buf,
|
|
size_t len)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
|
|
LOG_DBG("replace buffer (%d)", len);
|
|
data->rx_next_buffer = buf;
|
|
data->rx_next_buffer_len = len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int uart_stm32_async_init(const struct device *dev)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
|
|
data->uart_dev = dev;
|
|
|
|
if (data->dma_rx.dma_dev != NULL) {
|
|
if (!device_is_ready(data->dma_rx.dma_dev)) {
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
if (data->dma_tx.dma_dev != NULL) {
|
|
if (!device_is_ready(data->dma_rx.dma_dev)) {
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
/* Disable both TX and RX DMA requests */
|
|
uart_stm32_dma_rx_disable(dev);
|
|
uart_stm32_dma_tx_disable(dev);
|
|
|
|
k_work_init_delayable(&data->dma_rx.timeout_work,
|
|
uart_stm32_async_rx_timeout);
|
|
k_work_init_delayable(&data->dma_tx.timeout_work,
|
|
uart_stm32_async_tx_timeout);
|
|
|
|
/* Configure dma rx config */
|
|
memset(&data->dma_rx.blk_cfg, 0, sizeof(data->dma_rx.blk_cfg));
|
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32F1X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32F2X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32F4X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32L1X)
|
|
data->dma_rx.blk_cfg.source_address =
|
|
LL_USART_DMA_GetRegAddr(UartInstance);
|
|
#else
|
|
data->dma_rx.blk_cfg.source_address =
|
|
LL_USART_DMA_GetRegAddr(UartInstance,
|
|
LL_USART_DMA_REG_DATA_RECEIVE);
|
|
#endif
|
|
|
|
data->dma_rx.blk_cfg.dest_address = 0; /* dest not ready */
|
|
|
|
if (data->dma_rx.src_addr_increment) {
|
|
data->dma_rx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
|
|
} else {
|
|
data->dma_rx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
}
|
|
|
|
if (data->dma_rx.dst_addr_increment) {
|
|
data->dma_rx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
|
|
} else {
|
|
data->dma_rx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
}
|
|
|
|
/* RX disable circular buffer */
|
|
data->dma_rx.blk_cfg.source_reload_en = 0;
|
|
data->dma_rx.blk_cfg.dest_reload_en = 0;
|
|
data->dma_rx.blk_cfg.fifo_mode_control = data->dma_rx.fifo_threshold;
|
|
|
|
data->dma_rx.dma_cfg.head_block = &data->dma_rx.blk_cfg;
|
|
data->dma_rx.dma_cfg.user_data = (void *)dev;
|
|
data->rx_next_buffer = NULL;
|
|
data->rx_next_buffer_len = 0;
|
|
|
|
/* Configure dma tx config */
|
|
memset(&data->dma_tx.blk_cfg, 0, sizeof(data->dma_tx.blk_cfg));
|
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32F1X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32F2X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32F4X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32L1X)
|
|
data->dma_tx.blk_cfg.dest_address =
|
|
LL_USART_DMA_GetRegAddr(UartInstance);
|
|
#else
|
|
data->dma_tx.blk_cfg.dest_address =
|
|
LL_USART_DMA_GetRegAddr(UartInstance,
|
|
LL_USART_DMA_REG_DATA_TRANSMIT);
|
|
#endif
|
|
|
|
data->dma_tx.blk_cfg.source_address = 0; /* not ready */
|
|
|
|
if (data->dma_tx.src_addr_increment) {
|
|
data->dma_tx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
|
|
} else {
|
|
data->dma_tx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
}
|
|
|
|
if (data->dma_tx.dst_addr_increment) {
|
|
data->dma_tx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
|
|
} else {
|
|
data->dma_tx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
}
|
|
|
|
data->dma_tx.blk_cfg.fifo_mode_control = data->dma_tx.fifo_threshold;
|
|
|
|
data->dma_tx.dma_cfg.head_block = &data->dma_tx.blk_cfg;
|
|
data->dma_tx.dma_cfg.user_data = (void *)dev;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_UART_ASYNC_API */
|
|
|
|
static const struct uart_driver_api uart_stm32_driver_api = {
|
|
.poll_in = uart_stm32_poll_in,
|
|
.poll_out = uart_stm32_poll_out,
|
|
.err_check = uart_stm32_err_check,
|
|
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
|
|
.configure = uart_stm32_configure,
|
|
.config_get = uart_stm32_config_get,
|
|
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
|
|
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
|
|
.fifo_fill = uart_stm32_fifo_fill,
|
|
.fifo_read = uart_stm32_fifo_read,
|
|
.irq_tx_enable = uart_stm32_irq_tx_enable,
|
|
.irq_tx_disable = uart_stm32_irq_tx_disable,
|
|
.irq_tx_ready = uart_stm32_irq_tx_ready,
|
|
.irq_tx_complete = uart_stm32_irq_tx_complete,
|
|
.irq_rx_enable = uart_stm32_irq_rx_enable,
|
|
.irq_rx_disable = uart_stm32_irq_rx_disable,
|
|
.irq_rx_ready = uart_stm32_irq_rx_ready,
|
|
.irq_err_enable = uart_stm32_irq_err_enable,
|
|
.irq_err_disable = uart_stm32_irq_err_disable,
|
|
.irq_is_pending = uart_stm32_irq_is_pending,
|
|
.irq_update = uart_stm32_irq_update,
|
|
.irq_callback_set = uart_stm32_irq_callback_set,
|
|
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
|
|
#ifdef CONFIG_UART_ASYNC_API
|
|
.callback_set = uart_stm32_async_callback_set,
|
|
.tx = uart_stm32_async_tx,
|
|
.tx_abort = uart_stm32_async_tx_abort,
|
|
.rx_enable = uart_stm32_async_rx_enable,
|
|
.rx_disable = uart_stm32_async_rx_disable,
|
|
.rx_buf_rsp = uart_stm32_async_rx_buf_rsp,
|
|
#endif /* CONFIG_UART_ASYNC_API */
|
|
};
|
|
|
|
/**
|
|
* @brief Initialize UART channel
|
|
*
|
|
* This routine is called to reset the chip in a quiescent state.
|
|
* It is assumed that this function is called only once per UART.
|
|
*
|
|
* @param dev UART device struct
|
|
*
|
|
* @return 0
|
|
*/
|
|
static int uart_stm32_init(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
struct uart_stm32_data *data = dev->data;
|
|
USART_TypeDef *UartInstance = UART_STRUCT(dev);
|
|
uint32_t ll_parity;
|
|
uint32_t ll_datawidth;
|
|
int err;
|
|
|
|
__uart_stm32_get_clock(dev);
|
|
/* enable clock */
|
|
if (clock_control_on(data->clock,
|
|
(clock_control_subsys_t *)&config->pclken) != 0) {
|
|
return -EIO;
|
|
}
|
|
|
|
/* Configure dt provided device signals when available */
|
|
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
|
|
if (err < 0) {
|
|
return err;
|
|
}
|
|
|
|
LL_USART_Disable(UartInstance);
|
|
|
|
/* TX/RX direction */
|
|
LL_USART_SetTransferDirection(UartInstance,
|
|
LL_USART_DIRECTION_TX_RX);
|
|
|
|
/* Determine the datawidth and parity. If we use other parity than
|
|
* 'none' we must use datawidth = 9 (to get 8 databit + 1 parity bit).
|
|
*/
|
|
if (config->parity == 2) {
|
|
/* 8 databit, 1 parity bit, parity even */
|
|
ll_parity = LL_USART_PARITY_EVEN;
|
|
ll_datawidth = LL_USART_DATAWIDTH_9B;
|
|
} else if (config->parity == 1) {
|
|
/* 8 databit, 1 parity bit, parity odd */
|
|
ll_parity = LL_USART_PARITY_ODD;
|
|
ll_datawidth = LL_USART_DATAWIDTH_9B;
|
|
} else { /* Default to 8N0, but show warning if invalid value */
|
|
if (config->parity != 0) {
|
|
LOG_WRN("Invalid parity setting '%d'."
|
|
"Defaulting to 'none'.", config->parity);
|
|
}
|
|
/* 8 databit, parity none */
|
|
ll_parity = LL_USART_PARITY_NONE;
|
|
ll_datawidth = LL_USART_DATAWIDTH_8B;
|
|
}
|
|
|
|
/* Set datawidth and parity, 1 start bit, 1 stop bit */
|
|
LL_USART_ConfigCharacter(UartInstance,
|
|
ll_datawidth,
|
|
ll_parity,
|
|
LL_USART_STOPBITS_1);
|
|
|
|
if (config->hw_flow_control) {
|
|
uart_stm32_set_hwctrl(dev, LL_USART_HWCONTROL_RTS_CTS);
|
|
}
|
|
|
|
/* Set the default baudrate */
|
|
uart_stm32_set_baudrate(dev, data->baud_rate);
|
|
|
|
/* Enable the single wire / half-duplex mode */
|
|
if (config->single_wire) {
|
|
LL_USART_EnableHalfDuplex(UartInstance);
|
|
}
|
|
|
|
LL_USART_Enable(UartInstance);
|
|
|
|
#ifdef USART_ISR_TEACK
|
|
/* Wait until TEACK flag is set */
|
|
while (!(LL_USART_IsActiveFlag_TEACK(UartInstance))) {
|
|
}
|
|
#endif /* !USART_ISR_TEACK */
|
|
|
|
#ifdef USART_ISR_REACK
|
|
/* Wait until REACK flag is set */
|
|
while (!(LL_USART_IsActiveFlag_REACK(UartInstance))) {
|
|
}
|
|
#endif /* !USART_ISR_REACK */
|
|
|
|
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API)
|
|
config->uconf.irq_config_func(dev);
|
|
#elif defined(CONFIG_PM)
|
|
config->irq_config_func(dev);
|
|
#endif /* defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API) */
|
|
|
|
#ifdef CONFIG_UART_ASYNC_API
|
|
return uart_stm32_async_init(dev);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_UART_ASYNC_API
|
|
|
|
/* src_dev and dest_dev should be 'MEMORY' or 'PERIPHERAL'. */
|
|
#define UART_DMA_CHANNEL_INIT(index, dir, dir_cap, src_dev, dest_dev) \
|
|
.dma_dev = DEVICE_DT_GET(STM32_DMA_CTLR(index, dir)), \
|
|
.dma_channel = DT_INST_DMAS_CELL_BY_NAME(index, dir, channel), \
|
|
.dma_cfg = { \
|
|
.dma_slot = STM32_DMA_SLOT(index, dir, slot),\
|
|
.channel_direction = STM32_DMA_CONFIG_DIRECTION( \
|
|
STM32_DMA_CHANNEL_CONFIG(index, dir)),\
|
|
.channel_priority = STM32_DMA_CONFIG_PRIORITY( \
|
|
STM32_DMA_CHANNEL_CONFIG(index, dir)), \
|
|
.source_data_size = STM32_DMA_CONFIG_##src_dev##_DATA_SIZE(\
|
|
STM32_DMA_CHANNEL_CONFIG(index, dir)),\
|
|
.dest_data_size = STM32_DMA_CONFIG_##dest_dev##_DATA_SIZE(\
|
|
STM32_DMA_CHANNEL_CONFIG(index, dir)),\
|
|
.source_burst_length = 1, /* SINGLE transfer */ \
|
|
.dest_burst_length = 1, \
|
|
.block_count = 1, \
|
|
.dma_callback = uart_stm32_dma_##dir##_cb, \
|
|
}, \
|
|
.src_addr_increment = STM32_DMA_CONFIG_##src_dev##_ADDR_INC( \
|
|
STM32_DMA_CHANNEL_CONFIG(index, dir)), \
|
|
.dst_addr_increment = STM32_DMA_CONFIG_##dest_dev##_ADDR_INC( \
|
|
STM32_DMA_CHANNEL_CONFIG(index, dir)), \
|
|
.fifo_threshold = STM32_DMA_FEATURES_FIFO_THRESHOLD( \
|
|
STM32_DMA_FEATURES(index, dir)), \
|
|
|
|
#endif
|
|
|
|
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API) || \
|
|
defined(CONFIG_PM)
|
|
#define STM32_UART_IRQ_HANDLER_DECL(index) \
|
|
static void uart_stm32_irq_config_func_##index(const struct device *dev);
|
|
#define STM32_UART_IRQ_HANDLER(index) \
|
|
static void uart_stm32_irq_config_func_##index(const struct device *dev) \
|
|
{ \
|
|
IRQ_CONNECT(DT_INST_IRQN(index), \
|
|
DT_INST_IRQ(index, priority), \
|
|
uart_stm32_isr, DEVICE_DT_INST_GET(index), \
|
|
0); \
|
|
irq_enable(DT_INST_IRQN(index)); \
|
|
}
|
|
#else
|
|
#define STM32_UART_IRQ_HANDLER_DECL(index) /* Not used */
|
|
#define STM32_UART_IRQ_HANDLER(index) /* Not used */
|
|
#endif
|
|
|
|
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API)
|
|
#define STM32_UART_IRQ_HANDLER_FUNC(index) \
|
|
.irq_config_func = uart_stm32_irq_config_func_##index,
|
|
#define STM32_UART_POLL_IRQ_HANDLER_FUNC(index) /* Not used */
|
|
#elif defined(CONFIG_PM)
|
|
#define STM32_UART_IRQ_HANDLER_FUNC(index) /* Not used */
|
|
#define STM32_UART_POLL_IRQ_HANDLER_FUNC(index) \
|
|
.irq_config_func = uart_stm32_irq_config_func_##index,
|
|
#else
|
|
#define STM32_UART_IRQ_HANDLER_FUNC(index) /* Not used */
|
|
#define STM32_UART_POLL_IRQ_HANDLER_FUNC(index) /* Not used */
|
|
#endif
|
|
|
|
#ifdef CONFIG_UART_ASYNC_API
|
|
#define UART_DMA_CHANNEL(index, dir, DIR, src, dest) \
|
|
.dma_##dir = { \
|
|
COND_CODE_1(DT_INST_DMAS_HAS_NAME(index, dir), \
|
|
(UART_DMA_CHANNEL_INIT(index, dir, DIR, src, dest)), \
|
|
(NULL)) \
|
|
},
|
|
|
|
#else
|
|
#define UART_DMA_CHANNEL(index, dir, DIR, src, dest)
|
|
#endif
|
|
|
|
#define STM32_UART_INIT(index) \
|
|
STM32_UART_IRQ_HANDLER_DECL(index) \
|
|
\
|
|
PINCTRL_DT_INST_DEFINE(index); \
|
|
\
|
|
static const struct uart_stm32_config uart_stm32_cfg_##index = { \
|
|
.uconf = { \
|
|
.base = (uint8_t *)DT_INST_REG_ADDR(index), \
|
|
STM32_UART_IRQ_HANDLER_FUNC(index) \
|
|
}, \
|
|
.pclken = { .bus = DT_INST_CLOCKS_CELL(index, bus), \
|
|
.enr = DT_INST_CLOCKS_CELL(index, bits) \
|
|
}, \
|
|
.hw_flow_control = DT_INST_PROP(index, hw_flow_control), \
|
|
.parity = DT_INST_ENUM_IDX_OR(index, parity, UART_CFG_PARITY_NONE), \
|
|
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(index), \
|
|
.single_wire = DT_INST_PROP_OR(index, single_wire, false), \
|
|
STM32_UART_POLL_IRQ_HANDLER_FUNC(index) \
|
|
}; \
|
|
\
|
|
static struct uart_stm32_data uart_stm32_data_##index = { \
|
|
.baud_rate = DT_INST_PROP(index, current_speed), \
|
|
UART_DMA_CHANNEL(index, rx, RX, PERIPHERAL, MEMORY) \
|
|
UART_DMA_CHANNEL(index, tx, TX, MEMORY, PERIPHERAL) \
|
|
}; \
|
|
\
|
|
DEVICE_DT_INST_DEFINE(index, \
|
|
&uart_stm32_init, \
|
|
NULL, \
|
|
&uart_stm32_data_##index, &uart_stm32_cfg_##index, \
|
|
PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY, \
|
|
&uart_stm32_driver_api); \
|
|
\
|
|
STM32_UART_IRQ_HANDLER(index)
|
|
|
|
DT_INST_FOREACH_STATUS_OKAY(STM32_UART_INIT)
|