zephyr/drivers/adc/adc_mcux_adc16.c

501 lines
14 KiB
C

/*
* Copyright (c) 2017-2018, 2020, NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_kinetis_adc16
#include <errno.h>
#include <drivers/adc.h>
#ifdef CONFIG_ADC_MCUX_ADC16_ENABLE_EDMA
#include <drivers/dma.h>
#include <fsl_sim.h>
#endif
#include <fsl_adc16.h>
#define LOG_LEVEL CONFIG_ADC_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(adc_mcux_adc16);
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
struct mcux_adc16_config {
ADC_Type *base;
#ifndef CONFIG_ADC_MCUX_ADC16_ENABLE_EDMA
void (*irq_config_func)(const struct device *dev);
#endif
uint32_t clk_source; /* ADC clock source selection */
uint32_t long_sample; /* ADC long sample mode selection */
uint32_t hw_trigger_src; /* ADC hardware trigger source */
/* defined in SIM module SOPT7 */
#ifdef CONFIG_ADC_MCUX_ADC16_ENABLE_EDMA
uint32_t dma_slot; /* ADC DMA MUX slot */
#endif
uint32_t trg_offset;
uint32_t trg_bits;
uint32_t alt_offset;
uint32_t alt_bits;
bool periodic_trigger; /* ADC enable periodic trigger */
bool channel_mux_b;
bool high_speed; /* ADC enable high speed mode*/
bool continuous_convert; /* ADC enable continuous convert*/
};
#ifdef CONFIG_ADC_MCUX_ADC16_ENABLE_EDMA
struct adc_edma_config {
int32_t state;
uint32_t dma_channel;
void (*irq_call_back)(void);
struct dma_config dma_cfg;
struct dma_block_config dma_block;
};
#endif
struct mcux_adc16_data {
const struct device *dev;
struct adc_context ctx;
#ifdef CONFIG_ADC_MCUX_ADC16_ENABLE_EDMA
const struct device *dev_dma;
struct adc_edma_config adc_dma_config;
#endif
uint16_t *buffer;
uint16_t *repeat_buffer;
uint32_t channels;
uint8_t channel_id;
};
#ifdef CONFIG_ADC_MCUX_ADC16_HW_TRIGGER
#define SIM_SOPT7_ADCSET(x, shifts, mask) \
(((uint32_t)(((uint32_t)(x)) << shifts)) & mask)
#endif
#ifdef CONFIG_ADC_MCUX_ADC16_ENABLE_EDMA
static void adc_dma_callback(const struct device *dma_dev, void *callback_arg,
uint32_t channel, int error_code)
{
struct device *dev = (struct device *)callback_arg;
struct mcux_adc16_data *data = dev->data;
LOG_DBG("DMA done");
adc_context_on_sampling_done(&data->ctx, dev);
}
#endif
#ifdef CONFIG_ADC_MCUX_ADC16_HW_TRIGGER
static void adc_hw_trigger_enable(const struct device *dev)
{
const struct mcux_adc16_config *config = dev->config;
/* enable ADC trigger channel */
SIM->SOPT7 |= SIM_SOPT7_ADCSET(config->hw_trigger_src,
config->trg_offset, config->trg_bits) |
SIM_SOPT7_ADCSET(1, config->alt_offset, config->alt_bits);
}
#endif
static int mcux_adc16_channel_setup(const struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
uint8_t channel_id = channel_cfg->channel_id;
if (channel_id > (ADC_SC1_ADCH_MASK >> ADC_SC1_ADCH_SHIFT)) {
LOG_ERR("Channel %d is not valid", channel_id);
return -EINVAL;
}
if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
LOG_ERR("Invalid channel acquisition time");
return -EINVAL;
}
if (channel_cfg->differential) {
LOG_ERR("Differential channels are not supported");
return -EINVAL;
}
if (channel_cfg->gain != ADC_GAIN_1) {
LOG_ERR("Invalid channel gain");
return -EINVAL;
}
if (channel_cfg->reference != ADC_REF_INTERNAL) {
LOG_ERR("Invalid channel reference");
return -EINVAL;
}
#ifdef CONFIG_ADC_MCUX_ADC16_HW_TRIGGER
adc_hw_trigger_enable(dev);
#endif
return 0;
}
static int start_read(const struct device *dev,
const struct adc_sequence *sequence)
{
const struct mcux_adc16_config *config = dev->config;
struct mcux_adc16_data *data = dev->data;
adc16_hardware_average_mode_t mode;
adc16_resolution_t resolution;
int error;
uint32_t tmp32;
ADC_Type *base = config->base;
switch (sequence->resolution) {
case 8:
case 9:
resolution = kADC16_Resolution8or9Bit;
break;
case 10:
case 11:
resolution = kADC16_Resolution10or11Bit;
break;
case 12:
case 13:
resolution = kADC16_Resolution12or13Bit;
break;
#if defined(FSL_FEATURE_ADC16_MAX_RESOLUTION) && \
(FSL_FEATURE_ADC16_MAX_RESOLUTION >= 16U)
case 16:
resolution = kADC16_Resolution16Bit;
break;
#endif
default:
LOG_ERR("Invalid resolution");
return -EINVAL;
}
tmp32 = base->CFG1 & ~(ADC_CFG1_MODE_MASK);
tmp32 |= ADC_CFG1_MODE(resolution);
base->CFG1 = tmp32;
switch (sequence->oversampling) {
case 0:
mode = kADC16_HardwareAverageDisabled;
break;
case 2:
mode = kADC16_HardwareAverageCount4;
break;
case 3:
mode = kADC16_HardwareAverageCount8;
break;
case 4:
mode = kADC16_HardwareAverageCount16;
break;
case 5:
mode = kADC16_HardwareAverageCount32;
break;
default:
LOG_ERR("Invalid oversampling");
return -EINVAL;
}
ADC16_SetHardwareAverage(config->base, mode);
data->buffer = sequence->buffer;
adc_context_start_read(&data->ctx, sequence);
error = adc_context_wait_for_completion(&data->ctx);
#ifdef CONFIG_ADC_MCUX_ADC16_ENABLE_EDMA
dma_stop(data->dev_dma, data->adc_dma_config.dma_channel);
#endif
return error;
}
static int mcux_adc16_read(const struct device *dev,
const struct adc_sequence *sequence)
{
struct mcux_adc16_data *data = dev->data;
int error;
adc_context_lock(&data->ctx, false, NULL);
error = start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
#ifdef CONFIG_ADC_ASYNC
static int mcux_adc16_read_async(const struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
struct mcux_adc16_data *data = dev->data;
int error;
adc_context_lock(&data->ctx, true, async);
error = start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
#endif
static void mcux_adc16_start_channel(const struct device *dev)
{
const struct mcux_adc16_config *config = dev->config;
struct mcux_adc16_data *data = dev->data;
adc16_channel_config_t channel_config;
uint32_t channel_group = 0U;
data->channel_id = find_lsb_set(data->channels) - 1;
LOG_DBG("Starting channel %d", data->channel_id);
#if defined(FSL_FEATURE_ADC16_HAS_DIFF_MODE) && FSL_FEATURE_ADC16_HAS_DIFF_MODE
channel_config.enableDifferentialConversion = false;
#endif
channel_config.enableInterruptOnConversionCompleted = true;
channel_config.channelNumber = data->channel_id;
ADC16_SetChannelConfig(config->base, channel_group, &channel_config);
#ifdef CONFIG_ADC_MCUX_ADC16_ENABLE_EDMA
LOG_DBG("Starting EDMA");
dma_start(data->dev_dma, data->adc_dma_config.dma_channel);
#endif
LOG_DBG("Starting channel done");
}
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct mcux_adc16_data *data =
CONTAINER_OF(ctx, struct mcux_adc16_data, ctx);
data->channels = ctx->sequence.channels;
data->repeat_buffer = data->buffer;
#ifdef CONFIG_ADC_MCUX_ADC16_ENABLE_EDMA
LOG_DBG("config dma");
data->buffer = ctx->sequence.buffer;
data->adc_dma_config.dma_block.block_size = ctx->sequence.buffer_size;
data->adc_dma_config.dma_block.dest_address = (uint32_t)data->buffer;
data->adc_dma_config.dma_cfg.head_block =
&(data->adc_dma_config.dma_block);
dma_config(data->dev_dma, data->adc_dma_config.dma_channel,
&data->adc_dma_config.dma_cfg);
#endif
mcux_adc16_start_channel(data->dev);
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
bool repeat_sampling)
{
struct mcux_adc16_data *data =
CONTAINER_OF(ctx, struct mcux_adc16_data, ctx);
if (repeat_sampling) {
data->buffer = data->repeat_buffer;
}
}
#ifndef CONFIG_ADC_MCUX_ADC16_ENABLE_EDMA
static void mcux_adc16_isr(const struct device *dev)
{
const struct mcux_adc16_config *config = dev->config;
struct mcux_adc16_data *data = dev->data;
ADC_Type *base = config->base;
uint32_t channel_group = 0U;
uint16_t result;
result = ADC16_GetChannelConversionValue(base, channel_group);
LOG_DBG("Finished channel %d. Result is 0x%04x", data->channel_id,
result);
*data->buffer++ = result;
data->channels &= ~BIT(data->channel_id);
if (data->channels) {
mcux_adc16_start_channel(dev);
} else {
adc_context_on_sampling_done(&data->ctx, dev);
}
}
#endif
static int mcux_adc16_init(const struct device *dev)
{
const struct mcux_adc16_config *config = dev->config;
struct mcux_adc16_data *data = dev->data;
ADC_Type *base = config->base;
adc16_config_t adc_config;
LOG_DBG("init adc");
ADC16_GetDefaultConfig(&adc_config);
#ifdef CONFIG_ADC_MCUX_ADC16_ENABLE_EDMA
adc_config.clockSource = (adc16_clock_source_t)config->clk_source;
adc_config.longSampleMode =
(adc16_long_sample_mode_t)config->long_sample;
adc_config.enableHighSpeed = config->high_speed;
adc_config.enableContinuousConversion = config->continuous_convert;
#endif
#if CONFIG_ADC_MCUX_ADC16_VREF_DEFAULT
adc_config.referenceVoltageSource = kADC16_ReferenceVoltageSourceVref;
#else /* CONFIG_ADC_MCUX_ADC16_VREF_ALTERNATE */
adc_config.referenceVoltageSource = kADC16_ReferenceVoltageSourceValt;
#endif
#if CONFIG_ADC_MCUX_ADC16_CLK_DIV_RATIO_1
adc_config.clockDivider = kADC16_ClockDivider1;
#elif CONFIG_ADC_MCUX_ADC16_CLK_DIV_RATIO_2
adc_config.clockDivider = kADC16_ClockDivider2;
#elif CONFIG_ADC_MCUX_ADC16_CLK_DIV_RATIO_4
adc_config.clockDivider = kADC16_ClockDivider4;
#else /* CONFIG_ADC_MCUX_ADC16_CLK_DIV_RATIO_8 */
adc_config.clockDivider = kADC16_ClockDivider8;
#endif
ADC16_Init(base, &adc_config);
#if defined(FSL_FEATURE_ADC16_HAS_CALIBRATION) && \
FSL_FEATURE_ADC16_HAS_CALIBRATION
ADC16_SetHardwareAverage(base, kADC16_HardwareAverageCount32);
ADC16_DoAutoCalibration(base);
#endif
if (config->channel_mux_b) {
ADC16_SetChannelMuxMode(base, kADC16_ChannelMuxB);
}
if (IS_ENABLED(CONFIG_ADC_MCUX_ADC16_HW_TRIGGER)) {
ADC16_EnableHardwareTrigger(base, true);
} else {
ADC16_EnableHardwareTrigger(base, false);
}
data->dev = dev;
/* dma related init */
#ifdef CONFIG_ADC_MCUX_ADC16_ENABLE_EDMA
/* Enable DMA. */
ADC16_EnableDMA(base, true);
data->adc_dma_config.dma_cfg.block_count = 1U;
data->adc_dma_config.dma_cfg.dma_slot = config->dma_slot;
data->adc_dma_config.dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY;
data->adc_dma_config.dma_cfg.source_burst_length = 4U;
data->adc_dma_config.dma_cfg.dest_burst_length = 4U;
data->adc_dma_config.dma_cfg.channel_priority = 0U;
data->adc_dma_config.dma_cfg.dma_callback = adc_dma_callback;
data->adc_dma_config.dma_cfg.user_data = (void *)dev;
data->adc_dma_config.dma_cfg.source_data_size = 4U;
data->adc_dma_config.dma_cfg.dest_data_size = 4U;
data->adc_dma_config.dma_block.source_address = (uint32_t)&base->R[0];
if (data->dev_dma == NULL || !device_is_ready(data->dev_dma)) {
LOG_ERR("dma binding fail");
return -EINVAL;
}
if (config->periodic_trigger) {
enum dma_channel_filter adc_filter = DMA_CHANNEL_PERIODIC;
data->adc_dma_config.dma_channel =
dma_request_channel(data->dev_dma, (void *)&adc_filter);
} else {
enum dma_channel_filter adc_filter = DMA_CHANNEL_NORMAL;
data->adc_dma_config.dma_channel =
dma_request_channel(data->dev_dma, (void *)&adc_filter);
}
if (data->adc_dma_config.dma_channel == -EINVAL) {
LOG_ERR("can not allocate dma channel");
return -EINVAL;
}
LOG_DBG("dma allocated channel %d", data->adc_dma_config.dma_channel);
#else
config->irq_config_func(dev);
#endif
LOG_DBG("adc init done");
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
static const struct adc_driver_api mcux_adc16_driver_api = {
.channel_setup = mcux_adc16_channel_setup,
.read = mcux_adc16_read,
#ifdef CONFIG_ADC_ASYNC
.read_async = mcux_adc16_read_async,
#endif
};
#ifdef CONFIG_ADC_MCUX_ADC16_ENABLE_EDMA
#define ACD16_MCUX_INIT(n) \
static const struct mcux_adc16_config mcux_adc16_config_##n = { \
.base = (ADC_Type *)DT_INST_REG_ADDR(n), \
.channel_mux_b = DT_INST_PROP(n, channel_mux_b), \
.clk_source = DT_INST_PROP_OR(n, clk_source, 0), \
.long_sample = DT_INST_PROP_OR(n, long_sample, 0), \
.high_speed = DT_INST_PROP(n, high_speed), \
.periodic_trigger = DT_INST_PROP(n, periodic_trigger), \
.continuous_convert = \
DT_INST_PROP(n, continuous_convert), \
.hw_trigger_src = \
DT_INST_PROP_OR(n, hw_trigger_src, 0), \
.dma_slot = DT_INST_DMAS_CELL_BY_IDX(n, 0, source), \
.trg_offset = DT_INST_CLOCKS_CELL_BY_IDX(n, 0, offset), \
.trg_bits = DT_INST_CLOCKS_CELL_BY_IDX(n, 0, bits), \
.alt_offset = DT_INST_CLOCKS_CELL_BY_IDX(n, 1, offset), \
.alt_bits = DT_INST_CLOCKS_CELL_BY_IDX(n, 1, bits), \
}; \
\
static struct mcux_adc16_data mcux_adc16_data_##n = { \
ADC_CONTEXT_INIT_TIMER(mcux_adc16_data_##n, ctx), \
ADC_CONTEXT_INIT_LOCK(mcux_adc16_data_##n, ctx), \
ADC_CONTEXT_INIT_SYNC(mcux_adc16_data_##n, ctx), \
.dev_dma = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(n, adc##n)), \
}; \
\
DEVICE_DT_INST_DEFINE(n, &mcux_adc16_init, \
NULL, \
&mcux_adc16_data_##n, \
&mcux_adc16_config_##n, \
POST_KERNEL, \
CONFIG_ADC_INIT_PRIORITY, \
&mcux_adc16_driver_api);
#else
#define ACD16_MCUX_INIT(n) \
static void mcux_adc16_config_func_##n(const struct device *dev); \
static const struct mcux_adc16_config mcux_adc16_config_##n = { \
.base = (ADC_Type *)DT_INST_REG_ADDR(n), \
.irq_config_func = mcux_adc16_config_func_##n, \
.channel_mux_b = DT_INST_PROP(n, channel_mux_b), \
.clk_source = DT_INST_PROP_OR(n, clk_source, 0), \
.long_sample = DT_INST_PROP_OR(n, long_sample, 0), \
.high_speed = DT_INST_PROP(n, high_speed), \
.continuous_convert = \
DT_INST_PROP(n, continuous_convert), \
}; \
static struct mcux_adc16_data mcux_adc16_data_##n = { \
ADC_CONTEXT_INIT_TIMER(mcux_adc16_data_##n, ctx), \
ADC_CONTEXT_INIT_LOCK(mcux_adc16_data_##n, ctx), \
ADC_CONTEXT_INIT_SYNC(mcux_adc16_data_##n, ctx), \
}; \
\
DEVICE_DT_INST_DEFINE(n, &mcux_adc16_init, \
NULL, \
&mcux_adc16_data_##n, \
&mcux_adc16_config_##n, \
POST_KERNEL, \
CONFIG_ADC_INIT_PRIORITY, \
&mcux_adc16_driver_api); \
\
static void mcux_adc16_config_func_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \
mcux_adc16_isr, \
DEVICE_DT_INST_GET(n), 0); \
\
irq_enable(DT_INST_IRQN(n)); \
}
#endif
DT_INST_FOREACH_STATUS_OKAY(ACD16_MCUX_INIT)