zephyr/kernel/timeout.c

264 lines
5.0 KiB
C

/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <timeout_q.h>
#include <drivers/system_timer.h>
#include <sys_clock.h>
#include <spinlock.h>
#include <ksched.h>
#include <syscall_handler.h>
#define LOCKED(lck) for (k_spinlock_key_t __i = {}, \
__key = k_spin_lock(lck); \
!__i.key; \
k_spin_unlock(lck, __key), __i.key = 1)
static u64_t curr_tick;
static sys_dlist_t timeout_list = SYS_DLIST_STATIC_INIT(&timeout_list);
static struct k_spinlock timeout_lock;
static bool can_wait_forever;
/* Cycles left to process in the currently-executing z_clock_announce() */
static int announce_remaining;
#if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME)
int z_clock_hw_cycles_per_sec = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
#endif
static struct _timeout *first(void)
{
sys_dnode_t *t = sys_dlist_peek_head(&timeout_list);
return t == NULL ? NULL : CONTAINER_OF(t, struct _timeout, node);
}
static struct _timeout *next(struct _timeout *t)
{
sys_dnode_t *n = sys_dlist_peek_next(&timeout_list, &t->node);
return n == NULL ? NULL : CONTAINER_OF(n, struct _timeout, node);
}
static void remove_timeout(struct _timeout *t)
{
if (next(t) != NULL) {
next(t)->dticks += t->dticks;
}
sys_dlist_remove(&t->node);
}
static s32_t elapsed(void)
{
return announce_remaining == 0 ? z_clock_elapsed() : 0;
}
static s32_t next_timeout(void)
{
int maxw = can_wait_forever ? K_FOREVER : INT_MAX;
struct _timeout *to = first();
s32_t ret = to == NULL ? maxw : max(0, to->dticks - elapsed());
#ifdef CONFIG_TIMESLICING
if (_current_cpu->slice_ticks && _current_cpu->slice_ticks < ret) {
ret = _current_cpu->slice_ticks;
}
#endif
return ret;
}
void _add_timeout(struct _timeout *to, _timeout_func_t fn, s32_t ticks)
{
__ASSERT(!sys_dnode_is_linked(&to->node), "");
to->fn = fn;
ticks = max(1, ticks);
LOCKED(&timeout_lock) {
struct _timeout *t;
to->dticks = ticks + elapsed();
for (t = first(); t != NULL; t = next(t)) {
__ASSERT(t->dticks >= 0, "");
if (t->dticks > to->dticks) {
t->dticks -= to->dticks;
sys_dlist_insert(&t->node, &to->node);
break;
}
to->dticks -= t->dticks;
}
if (t == NULL) {
sys_dlist_append(&timeout_list, &to->node);
}
if (to == first()) {
z_clock_set_timeout(next_timeout(), false);
}
}
}
int _abort_timeout(struct _timeout *to)
{
int ret = -EINVAL;
LOCKED(&timeout_lock) {
if (sys_dnode_is_linked(&to->node)) {
remove_timeout(to);
ret = 0;
}
}
return ret;
}
s32_t z_timeout_remaining(struct _timeout *timeout)
{
s32_t ticks = 0;
if (_is_inactive_timeout(timeout)) {
return 0;
}
LOCKED(&timeout_lock) {
for (struct _timeout *t = first(); t != NULL; t = next(t)) {
ticks += t->dticks;
if (timeout == t) {
break;
}
}
}
return ticks;
}
s32_t _get_next_timeout_expiry(void)
{
s32_t ret = K_FOREVER;
LOCKED(&timeout_lock) {
ret = next_timeout();
}
return ret;
}
void z_set_timeout_expiry(s32_t ticks, bool idle)
{
LOCKED(&timeout_lock) {
int next = next_timeout();
bool sooner = (next == K_FOREVER) || (ticks < next);
bool imminent = next <= 1;
/* Only set new timeouts when they are sooner than
* what we have. Also don't try to set a timeout when
* one is about to expire: drivers have internal logic
* that will bump the timeout to the "next" tick if
* it's not considered to be settable as directed.
*/
if (sooner && !imminent) {
z_clock_set_timeout(ticks, idle);
}
}
}
void z_clock_announce(s32_t ticks)
{
#ifdef CONFIG_TIMESLICING
z_time_slice(ticks);
#endif
k_spinlock_key_t key = k_spin_lock(&timeout_lock);
announce_remaining = ticks;
while (first() != NULL && first()->dticks <= announce_remaining) {
struct _timeout *t = first();
int dt = t->dticks;
curr_tick += dt;
announce_remaining -= dt;
t->dticks = 0;
remove_timeout(t);
k_spin_unlock(&timeout_lock, key);
t->fn(t);
key = k_spin_lock(&timeout_lock);
}
if (first() != NULL) {
first()->dticks -= announce_remaining;
}
curr_tick += announce_remaining;
announce_remaining = 0;
z_clock_set_timeout(next_timeout(), false);
k_spin_unlock(&timeout_lock, key);
}
int k_enable_sys_clock_always_on(void)
{
int ret = !can_wait_forever;
can_wait_forever = 0;
return ret;
}
void k_disable_sys_clock_always_on(void)
{
can_wait_forever = 1;
}
s64_t z_tick_get(void)
{
u64_t t = 0U;
LOCKED(&timeout_lock) {
t = curr_tick + z_clock_elapsed();
}
return t;
}
u32_t z_tick_get_32(void)
{
#ifdef CONFIG_TICKLESS_KERNEL
return (u32_t)z_tick_get();
#else
return (u32_t)curr_tick;
#endif
}
u32_t _impl_k_uptime_get_32(void)
{
return __ticks_to_ms(z_tick_get_32());
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_uptime_get_32)
{
return _impl_k_uptime_get_32();
}
#endif
s64_t _impl_k_uptime_get(void)
{
return __ticks_to_ms(z_tick_get());
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_uptime_get, ret_p)
{
u64_t *ret = (u64_t *)ret_p;
Z_OOPS(Z_SYSCALL_MEMORY_WRITE(ret, sizeof(*ret)));
*ret = _impl_k_uptime_get();
return 0;
}
#endif