zephyr/drivers/sensor/adxl362/adxl362.c

815 lines
19 KiB
C

/* adxl362.c - ADXL362 Three-Axis Digital Accelerometers */
/*
* Copyright (c) 2017 IpTronix S.r.l.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT adi_adxl362
#include <kernel.h>
#include <string.h>
#include <drivers/sensor.h>
#include <init.h>
#include <drivers/gpio.h>
#include <sys/byteorder.h>
#include <sys/__assert.h>
#include <drivers/spi.h>
#include <logging/log.h>
#include "adxl362.h"
LOG_MODULE_REGISTER(ADXL362, CONFIG_SENSOR_LOG_LEVEL);
static struct adxl362_data adxl362_data;
static int adxl362_reg_access(struct adxl362_data *ctx, uint8_t cmd,
uint8_t reg_addr, void *data, size_t length)
{
uint8_t access[2] = { cmd, reg_addr };
const struct spi_buf buf[2] = {
{
.buf = access,
.len = 2
},
{
.buf = data,
.len = length
}
};
struct spi_buf_set tx = {
.buffers = buf,
};
if (cmd == ADXL362_READ_REG) {
const struct spi_buf_set rx = {
.buffers = buf,
.count = 2
};
tx.count = 1;
return spi_transceive(ctx->spi, &ctx->spi_cfg, &tx, &rx);
}
tx.count = 2;
return spi_write(ctx->spi, &ctx->spi_cfg, &tx);
}
static inline int adxl362_set_reg(const struct device *dev,
uint16_t register_value,
uint8_t register_address, uint8_t count)
{
struct adxl362_data *adxl362_data = dev->data;
return adxl362_reg_access(adxl362_data,
ADXL362_WRITE_REG,
register_address,
&register_value,
count);
}
int adxl362_reg_write_mask(const struct device *dev, uint8_t register_address,
uint8_t mask, uint8_t data)
{
int ret;
uint8_t tmp;
struct adxl362_data *adxl362_data = dev->data;
ret = adxl362_reg_access(adxl362_data,
ADXL362_READ_REG,
register_address,
&tmp,
1);
if (ret) {
return ret;
}
tmp &= ~mask;
tmp |= data;
return adxl362_reg_access(adxl362_data,
ADXL362_WRITE_REG,
register_address,
&tmp,
1);
}
static inline int adxl362_get_reg(const struct device *dev, uint8_t *read_buf,
uint8_t register_address, uint8_t count)
{
struct adxl362_data *adxl362_data = dev->data;
return adxl362_reg_access(adxl362_data,
ADXL362_READ_REG,
register_address,
read_buf, count);
}
#if defined(CONFIG_ADXL362_TRIGGER)
static int adxl362_interrupt_config(const struct device *dev,
uint8_t int1,
uint8_t int2)
{
int ret;
struct adxl362_data *adxl362_data = dev->data;
ret = adxl362_reg_access(adxl362_data,
ADXL362_WRITE_REG,
ADXL362_REG_INTMAP1,
&int1,
1);
if (ret) {
return ret;
}
return ret = adxl362_reg_access(adxl362_data,
ADXL362_WRITE_REG,
ADXL362_REG_INTMAP2,
&int2,
1);
}
int adxl362_get_status(const struct device *dev, uint8_t *status)
{
return adxl362_get_reg(dev, status, ADXL362_REG_STATUS, 1);
}
int adxl362_clear_data_ready(const struct device *dev)
{
uint8_t buf;
/* Reading any data register clears the data ready interrupt */
return adxl362_get_reg(dev, &buf, ADXL362_REG_XDATA, 1);
}
#endif
static int adxl362_software_reset(const struct device *dev)
{
return adxl362_set_reg(dev, ADXL362_RESET_KEY,
ADXL362_REG_SOFT_RESET, 1);
}
static int adxl362_set_power_mode(const struct device *dev, uint8_t mode)
{
uint8_t old_power_ctl;
uint8_t new_power_ctl;
int ret;
ret = adxl362_get_reg(dev, &old_power_ctl, ADXL362_REG_POWER_CTL, 1);
if (ret) {
return ret;
}
new_power_ctl = old_power_ctl & ~ADXL362_POWER_CTL_MEASURE(0x3);
new_power_ctl = new_power_ctl |
(mode *
ADXL362_POWER_CTL_MEASURE(ADXL362_MEASURE_ON));
return adxl362_set_reg(dev, new_power_ctl, ADXL362_REG_POWER_CTL, 1);
}
/*
* Output data rate map with allowed frequencies:
* freq = freq_int + freq_milli / 1000
*
* Since we don't need a finer frequency resolution than milliHz, use uint16_t
* to save some flash.
*/
static const struct {
uint16_t freq_int;
uint16_t freq_milli; /* User should convert to uHz before setting the
* SENSOR_ATTR_SAMPLING_FREQUENCY attribute.
*/
} adxl362_odr_map[] = {
{ 12, 500 },
{ 25, 0 },
{ 50, 0 },
{ 100, 0 },
{ 200, 0 },
{ 400, 0 },
};
static int adxl362_freq_to_odr_val(uint16_t freq_int, uint16_t freq_milli)
{
size_t i;
/* An ODR of 0 Hz is not allowed */
if (freq_int == 0U && freq_milli == 0U) {
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(adxl362_odr_map); i++) {
if (freq_int < adxl362_odr_map[i].freq_int ||
(freq_int == adxl362_odr_map[i].freq_int &&
freq_milli <= adxl362_odr_map[i].freq_milli)) {
return i;
}
}
return -EINVAL;
}
static const struct adxl362_range {
uint16_t range;
uint8_t reg_val;
} adxl362_acc_range_map[] = {
{2, ADXL362_RANGE_2G},
{4, ADXL362_RANGE_4G},
{8, ADXL362_RANGE_8G},
};
static int32_t adxl362_range_to_reg_val(uint16_t range)
{
int i;
for (i = 0; i < ARRAY_SIZE(adxl362_acc_range_map); i++) {
if (range <= adxl362_acc_range_map[i].range) {
return adxl362_acc_range_map[i].reg_val;
}
}
return -EINVAL;
}
static int adxl362_set_range(const struct device *dev, uint8_t range)
{
struct adxl362_data *adxl362_data = dev->data;
uint8_t old_filter_ctl;
uint8_t new_filter_ctl;
int ret;
ret = adxl362_get_reg(dev, &old_filter_ctl, ADXL362_REG_FILTER_CTL, 1);
if (ret) {
return ret;
}
new_filter_ctl = old_filter_ctl & ~ADXL362_FILTER_CTL_RANGE(0x3);
new_filter_ctl = new_filter_ctl | ADXL362_FILTER_CTL_RANGE(range);
ret = adxl362_set_reg(dev, new_filter_ctl, ADXL362_REG_FILTER_CTL, 1);
if (ret) {
return ret;
}
adxl362_data->selected_range = range;
return 0;
}
static int adxl362_set_output_rate(const struct device *dev, uint8_t out_rate)
{
uint8_t old_filter_ctl;
uint8_t new_filter_ctl;
adxl362_get_reg(dev, &old_filter_ctl, ADXL362_REG_FILTER_CTL, 1);
new_filter_ctl = old_filter_ctl & ~ADXL362_FILTER_CTL_ODR(0x7);
new_filter_ctl = new_filter_ctl | ADXL362_FILTER_CTL_ODR(out_rate);
adxl362_set_reg(dev, new_filter_ctl, ADXL362_REG_FILTER_CTL, 1);
return 0;
}
static int axl362_acc_config(const struct device *dev,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (attr) {
#if defined(CONFIG_ADXL362_ACCEL_RANGE_RUNTIME)
case SENSOR_ATTR_FULL_SCALE:
{
int range_reg;
range_reg = adxl362_range_to_reg_val(sensor_ms2_to_g(val));
if (range_reg < 0) {
LOG_DBG("invalid range requested.");
return -ENOTSUP;
}
return adxl362_set_range(dev, range_reg);
}
break;
#endif
#if defined(CONFIG_ADXL362_ACCEL_ODR_RUNTIME)
case SENSOR_ATTR_SAMPLING_FREQUENCY:
{
int out_rate;
out_rate = adxl362_freq_to_odr_val(val->val1,
val->val2 / 1000);
if (out_rate < 0) {
LOG_DBG("invalid output rate.");
return -ENOTSUP;
}
return adxl362_set_output_rate(dev, out_rate);
}
break;
#endif
default:
LOG_DBG("Accel attribute not supported.");
return -ENOTSUP;
}
return 0;
}
static int adxl362_attr_set_thresh(const struct device *dev,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
uint8_t reg;
uint16_t threshold = val->val1;
size_t ret;
if (chan != SENSOR_CHAN_ACCEL_X &&
chan != SENSOR_CHAN_ACCEL_Y &&
chan != SENSOR_CHAN_ACCEL_Z) {
return -EINVAL;
}
if (threshold > 2047) {
return -EINVAL;
}
/* Configure motion threshold. */
if (attr == SENSOR_ATTR_UPPER_THRESH) {
reg = ADXL362_REG_THRESH_ACT_L;
} else {
reg = ADXL362_REG_THRESH_INACT_L;
}
ret = adxl362_set_reg(dev, (threshold & 0x7FF), reg, 2);
return ret;
}
static int adxl362_attr_set(const struct device *dev,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (attr) {
case SENSOR_ATTR_UPPER_THRESH:
case SENSOR_ATTR_LOWER_THRESH:
return adxl362_attr_set_thresh(dev, chan, attr, val);
default:
/* Do nothing */
break;
}
switch (chan) {
case SENSOR_CHAN_ACCEL_X:
case SENSOR_CHAN_ACCEL_Y:
case SENSOR_CHAN_ACCEL_Z:
case SENSOR_CHAN_ACCEL_XYZ:
return axl362_acc_config(dev, chan, attr, val);
default:
LOG_DBG("attr_set() not supported on this channel.");
return -ENOTSUP;
}
return 0;
}
static int adxl362_fifo_setup(const struct device *dev, uint8_t mode,
uint16_t water_mark_lvl, uint8_t en_temp_read)
{
uint8_t write_val;
int ret;
write_val = ADXL362_FIFO_CTL_FIFO_MODE(mode) |
(en_temp_read * ADXL362_FIFO_CTL_FIFO_TEMP) |
ADXL362_FIFO_CTL_AH;
ret = adxl362_set_reg(dev, write_val, ADXL362_REG_FIFO_CTL, 1);
if (ret) {
return ret;
}
ret = adxl362_set_reg(dev, water_mark_lvl, ADXL362_REG_FIFO_SAMPLES, 2);
if (ret) {
return ret;
}
return 0;
}
static int adxl362_setup_activity_detection(const struct device *dev,
uint8_t ref_or_abs,
uint16_t threshold,
uint8_t time)
{
uint8_t old_act_inact_reg;
uint8_t new_act_inact_reg;
int ret;
/**
* mode
* must be one of the following:
* ADXL362_FIFO_DISABLE - FIFO is disabled.
* ADXL362_FIFO_OLDEST_SAVED - Oldest saved mode.
* ADXL362_FIFO_STREAM - Stream mode.
* ADXL362_FIFO_TRIGGERED - Triggered mode.
* water_mark_lvl
* Specifies the number of samples to store in the FIFO.
* en_temp_read
* Store Temperature Data to FIFO.
* 1 - temperature data is stored in the FIFO
* together with x-, y- and x-axis data.
* 0 - temperature data is skipped.
*/
/* Configure motion threshold and activity timer. */
ret = adxl362_set_reg(dev, (threshold & 0x7FF),
ADXL362_REG_THRESH_ACT_L, 2);
if (ret) {
return ret;
}
ret = adxl362_set_reg(dev, time, ADXL362_REG_TIME_ACT, 1);
if (ret) {
return ret;
}
/* Enable activity interrupt and select a referenced or absolute
* configuration.
*/
ret = adxl362_get_reg(dev, &old_act_inact_reg,
ADXL362_REG_ACT_INACT_CTL, 1);
if (ret) {
return ret;
}
new_act_inact_reg = old_act_inact_reg & ~ADXL362_ACT_INACT_CTL_ACT_REF;
new_act_inact_reg |= ADXL362_ACT_INACT_CTL_ACT_EN |
(ref_or_abs * ADXL362_ACT_INACT_CTL_ACT_REF);
ret = adxl362_set_reg(dev, new_act_inact_reg,
ADXL362_REG_ACT_INACT_CTL, 1);
if (ret) {
return ret;
}
return 0;
}
static int adxl362_setup_inactivity_detection(const struct device *dev,
uint8_t ref_or_abs,
uint16_t threshold,
uint16_t time)
{
uint8_t old_act_inact_reg;
uint8_t new_act_inact_reg;
int ret;
/* Configure motion threshold and inactivity timer. */
ret = adxl362_set_reg(dev, (threshold & 0x7FF),
ADXL362_REG_THRESH_INACT_L, 2);
if (ret) {
return ret;
}
ret = adxl362_set_reg(dev, time, ADXL362_REG_TIME_INACT_L, 2);
if (ret) {
return ret;
}
/* Enable inactivity interrupt and select a referenced or
* absolute configuration.
*/
ret = adxl362_get_reg(dev, &old_act_inact_reg,
ADXL362_REG_ACT_INACT_CTL, 1);
if (ret) {
return ret;
}
new_act_inact_reg = old_act_inact_reg &
~ADXL362_ACT_INACT_CTL_INACT_REF;
new_act_inact_reg |= ADXL362_ACT_INACT_CTL_INACT_EN |
(ref_or_abs * ADXL362_ACT_INACT_CTL_INACT_REF);
ret = adxl362_set_reg(dev, new_act_inact_reg,
ADXL362_REG_ACT_INACT_CTL, 1);
if (ret) {
return ret;
}
return 0;
}
int adxl362_set_interrupt_mode(const struct device *dev, uint8_t mode)
{
uint8_t old_act_inact_reg;
uint8_t new_act_inact_reg;
int ret;
LOG_DBG("Mode: %d", mode);
if (mode != ADXL362_MODE_DEFAULT &&
mode != ADXL362_MODE_LINK &&
mode != ADXL362_MODE_LOOP) {
LOG_ERR("Wrong mode");
return -EINVAL;
}
/* Select desired interrupt mode. */
ret = adxl362_get_reg(dev, &old_act_inact_reg,
ADXL362_REG_ACT_INACT_CTL, 1);
if (ret) {
return ret;
}
new_act_inact_reg = old_act_inact_reg &
~ADXL362_ACT_INACT_CTL_LINKLOOP(3);
new_act_inact_reg |= old_act_inact_reg |
ADXL362_ACT_INACT_CTL_LINKLOOP(mode);
ret = adxl362_set_reg(dev, new_act_inact_reg,
ADXL362_REG_ACT_INACT_CTL, 1);
if (ret) {
return ret;
}
return 0;
}
static int adxl362_sample_fetch(const struct device *dev,
enum sensor_channel chan)
{
struct adxl362_data *data = dev->data;
int16_t buf[4];
int ret;
__ASSERT_NO_MSG(chan == SENSOR_CHAN_ALL);
ret = adxl362_get_reg(dev, (uint8_t *)buf, ADXL362_REG_XDATA_L,
sizeof(buf));
if (ret) {
return ret;
}
data->acc_x = sys_le16_to_cpu(buf[0]);
data->acc_y = sys_le16_to_cpu(buf[1]);
data->acc_z = sys_le16_to_cpu(buf[2]);
data->temp = sys_le16_to_cpu(buf[3]);
return 0;
}
static inline int adxl362_range_to_scale(int range)
{
/* See table 1 in specifications section of datasheet */
switch (range) {
case ADXL362_RANGE_2G:
return ADXL362_ACCEL_2G_LSB_PER_G;
case ADXL362_RANGE_4G:
return ADXL362_ACCEL_4G_LSB_PER_G;
case ADXL362_RANGE_8G:
return ADXL362_ACCEL_8G_LSB_PER_G;
default:
return -EINVAL;
}
}
static void adxl362_accel_convert(struct sensor_value *val, int accel,
int range)
{
int scale = adxl362_range_to_scale(range);
long micro_ms2 = accel * SENSOR_G / scale;
__ASSERT_NO_MSG(scale != -EINVAL);
val->val1 = micro_ms2 / 1000000;
val->val2 = micro_ms2 % 1000000;
}
static void adxl362_temp_convert(struct sensor_value *val, int temp)
{
/* See sensitivity and bias specifications in table 1 of datasheet */
int milli_c = (temp - ADXL362_TEMP_BIAS_LSB) * ADXL362_TEMP_MC_PER_LSB;
val->val1 = milli_c / 1000;
val->val2 = (milli_c % 1000) * 1000;
}
static int adxl362_channel_get(const struct device *dev,
enum sensor_channel chan,
struct sensor_value *val)
{
struct adxl362_data *data = dev->data;
switch (chan) {
case SENSOR_CHAN_ACCEL_X: /* Acceleration on the X axis, in m/s^2. */
adxl362_accel_convert(val, data->acc_x, data->selected_range);
break;
case SENSOR_CHAN_ACCEL_Y: /* Acceleration on the Y axis, in m/s^2. */
adxl362_accel_convert(val, data->acc_y, data->selected_range);
break;
case SENSOR_CHAN_ACCEL_Z: /* Acceleration on the Z axis, in m/s^2. */
adxl362_accel_convert(val, data->acc_z, data->selected_range);
break;
case SENSOR_CHAN_DIE_TEMP: /* Temperature in degrees Celsius. */
adxl362_temp_convert(val, data->temp);
break;
default:
return -ENOTSUP;
}
return 0;
}
static const struct sensor_driver_api adxl362_api_funcs = {
.attr_set = adxl362_attr_set,
.sample_fetch = adxl362_sample_fetch,
.channel_get = adxl362_channel_get,
#ifdef CONFIG_ADXL362_TRIGGER
.trigger_set = adxl362_trigger_set,
#endif
};
static int adxl362_chip_init(const struct device *dev)
{
int ret;
/* Configures activity detection.
* Referenced/Absolute Activity or Inactivity Select.
* 0 - absolute mode.
* 1 - referenced mode.
* threshold
* 11-bit unsigned value that the adxl362 samples are
* compared to.
* time
* 8-bit value written to the activity timer register.
* The amount of time (in seconds) is:
* time / ODR,
* where ODR - is the output data rate.
*/
ret =
adxl362_setup_activity_detection(dev,
CONFIG_ADXL362_ABS_REF_MODE,
CONFIG_ADXL362_ACTIVITY_THRESHOLD,
1);
if (ret) {
return ret;
}
/* Configures inactivity detection.
* Referenced/Absolute Activity or Inactivity Select.
* 0 - absolute mode.
* 1 - referenced mode.
* threshold
* 11-bit unsigned value that the adxl362 samples are
* compared to.
* time
* 16-bit value written to the activity timer register.
* The amount of time (in seconds) is:
* time / ODR,
* where ODR - is the output data rate.
*/
ret =
adxl362_setup_inactivity_detection(dev,
CONFIG_ADXL362_ABS_REF_MODE,
CONFIG_ADXL362_INACTIVITY_THRESHOLD,
1);
if (ret) {
return ret;
}
/* Configures the FIFO feature. */
ret = adxl362_fifo_setup(dev, ADXL362_FIFO_DISABLE, 0, 0);
if (ret) {
return ret;
}
/* Selects the measurement range.
* options are:
* ADXL362_RANGE_2G - +-2 g
* ADXL362_RANGE_4G - +-4 g
* ADXL362_RANGE_8G - +-8 g
*/
ret = adxl362_set_range(dev, ADXL362_DEFAULT_RANGE_ACC);
if (ret) {
return ret;
}
/* Selects the Output Data Rate of the device.
* Options are:
* ADXL362_ODR_12_5_HZ - 12.5Hz
* ADXL362_ODR_25_HZ - 25Hz
* ADXL362_ODR_50_HZ - 50Hz
* ADXL362_ODR_100_HZ - 100Hz
* ADXL362_ODR_200_HZ - 200Hz
* ADXL362_ODR_400_HZ - 400Hz
*/
ret = adxl362_set_output_rate(dev, ADXL362_DEFAULT_ODR_ACC);
if (ret) {
return ret;
}
/* Places the device into measure mode. */
ret = adxl362_set_power_mode(dev, 1);
if (ret) {
return ret;
}
return 0;
}
/**
* @brief Initializes communication with the device and checks if the part is
* present by reading the device id.
*
* @return 0 - the initialization was successful and the device is present;
* -1 - an error occurred.
*
*/
static int adxl362_init(const struct device *dev)
{
const struct adxl362_config *config = dev->config;
struct adxl362_data *data = dev->data;
uint8_t value;
int err;
data->spi = device_get_binding(config->spi_name);
if (!data->spi) {
LOG_DBG("spi device not found: %s", config->spi_name);
return -EINVAL;
}
data->spi_cfg.operation = SPI_WORD_SET(8) | SPI_TRANSFER_MSB;
data->spi_cfg.frequency = config->spi_max_frequency;
data->spi_cfg.slave = config->spi_slave;
#if DT_INST_SPI_DEV_HAS_CS_GPIOS(0)
data->adxl362_cs_ctrl.gpio_dev =
device_get_binding(config->gpio_cs_port);
if (!data->adxl362_cs_ctrl.gpio_dev) {
LOG_ERR("Unable to get GPIO SPI CS device");
return -ENODEV;
}
data->adxl362_cs_ctrl.gpio_pin = config->cs_gpio;
data->adxl362_cs_ctrl.gpio_dt_flags = config->cs_flags;
data->adxl362_cs_ctrl.delay = 0U;
data->spi_cfg.cs = &data->adxl362_cs_ctrl;
#endif
err = adxl362_software_reset(dev);
if (err) {
LOG_ERR("adxl362_software_reset failed, error %d\n", err);
return -ENODEV;
}
k_sleep(K_MSEC(5));
adxl362_get_reg(dev, &value, ADXL362_REG_PARTID, 1);
if (value != ADXL362_PART_ID) {
LOG_ERR("Failed: %d\n", value);
return -ENODEV;
}
if (adxl362_chip_init(dev) < 0) {
return -ENODEV;
}
#if defined(CONFIG_ADXL362_TRIGGER)
if (adxl362_init_interrupt(dev) < 0) {
LOG_ERR("Failed to initialize interrupt!");
return -EIO;
}
if (adxl362_interrupt_config(dev,
config->int1_config,
config->int2_config) < 0) {
LOG_ERR("Failed to configure interrupt");
return -EIO;
}
#endif
return 0;
}
static const struct adxl362_config adxl362_config = {
.spi_name = DT_INST_BUS_LABEL(0),
.spi_slave = DT_INST_REG_ADDR(0),
.spi_max_frequency = DT_INST_PROP(0, spi_max_frequency),
#if DT_INST_SPI_DEV_HAS_CS_GPIOS(0)
.gpio_cs_port = DT_INST_SPI_DEV_CS_GPIOS_LABEL(0),
.cs_gpio = DT_INST_SPI_DEV_CS_GPIOS_PIN(0),
.cs_flags = DT_INST_SPI_DEV_CS_GPIOS_FLAGS(0),
#endif
#if defined(CONFIG_ADXL362_TRIGGER)
.gpio_port = DT_INST_GPIO_LABEL(0, int1_gpios),
.int_gpio = DT_INST_GPIO_PIN(0, int1_gpios),
.int_flags = DT_INST_GPIO_FLAGS(0, int1_gpios),
#endif
};
DEVICE_AND_API_INIT(adxl362, DT_INST_LABEL(0), adxl362_init,
&adxl362_data, &adxl362_config, POST_KERNEL,
CONFIG_SENSOR_INIT_PRIORITY, &adxl362_api_funcs);