zephyr/kernel/nanokernel/nano_timer.c

289 lines
7.9 KiB
C

/* nano_timer.c - timer for nanokernel-only systems */
/*
* Copyright (c) 1997-2016 Wind River Systems, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <nano_private.h>
#include <misc/debug/object_tracing_common.h>
#include <wait_q.h>
void nano_timer_init(struct nano_timer *timer, void *data)
{
/* initialize timeout_data */
_nano_timeout_init(&timer->timeout_data, NULL);
/* nano_timer_test() returns NULL on timer that was not started */
timer->user_data = NULL;
timer->user_data_backup = data;
SYS_TRACING_OBJ_INIT(nano_timer, timer);
}
FUNC_ALIAS(_timer_start, nano_isr_timer_start, void);
FUNC_ALIAS(_timer_start, nano_fiber_timer_start, void);
FUNC_ALIAS(_timer_start, nano_task_timer_start, void);
FUNC_ALIAS(_timer_start, nano_timer_start, void);
/**
*
* @brief Start a nanokernel timer (generic implementation)
*
* This function starts a previously initialized nanokernel timer object.
* The timer will expire in <ticks> system clock ticks.
*
* @param timer The Timer to start
* @param ticks The number of system ticks before expiration
*
* @return N/A
*/
void _timer_start(struct nano_timer *timer, int ticks)
{
int key = irq_lock();
/*
* Once timer is started nano_timer_test() returns
* the pointer to user data
*/
timer->user_data = timer->user_data_backup;
_nano_timer_timeout_add(&timer->timeout_data,
NULL, ticks);
irq_unlock(key);
}
FUNC_ALIAS(_timer_stop_non_preemptible, nano_isr_timer_stop, void);
FUNC_ALIAS(_timer_stop_non_preemptible, nano_fiber_timer_stop, void);
void _timer_stop_non_preemptible(struct nano_timer *timer)
{
struct _nano_timeout *t = &timer->timeout_data;
struct tcs *tcs = t->tcs;
int key = irq_lock();
/*
* Verify first if fiber is not waiting on an object,
* timer is not expired and there is a fiber waiting
* on it
*/
if (!t->wait_q && (_nano_timer_timeout_abort(t) == 0) &&
tcs != NULL) {
if (_IS_MICROKERNEL_TASK(tcs)) {
_NANO_TIMER_TASK_READY(tcs);
} else {
_nano_fiber_ready(tcs);
}
}
/*
* After timer gets aborted nano_timer_test() should
* return NULL until timer gets restarted
*/
timer->user_data = NULL;
irq_unlock(key);
}
#ifdef CONFIG_MICROKERNEL
extern void _task_nano_timer_task_ready(void *uk_task_ptr);
#define _TASK_NANO_TIMER_TASK_READY(tcs) \
_task_nano_timer_task_ready(tcs->uk_task_ptr)
#else
#define _TASK_NANO_TIMER_TASK_READY(tcs) do { } while (0)
#endif
void nano_task_timer_stop(struct nano_timer *timer)
{
struct _nano_timeout *t = &timer->timeout_data;
struct tcs *tcs = t->tcs;
int key = irq_lock();
timer->user_data = NULL;
/*
* Verify first if fiber is not waiting on an object,
* timer is not expired and there is a fiber waiting
* on it
*/
if (!t->wait_q && (_nano_timer_timeout_abort(t) == 0) &&
tcs != NULL) {
if (!_IS_MICROKERNEL_TASK(tcs)) {
_nano_fiber_ready(tcs);
_Swap(key);
return;
}
_TASK_NANO_TIMER_TASK_READY(tcs);
}
irq_unlock(key);
}
void nano_timer_stop(struct nano_timer *timer)
{
static void (*func[3])(struct nano_timer *) = {
nano_isr_timer_stop,
nano_fiber_timer_stop,
nano_task_timer_stop,
};
func[sys_execution_context_type_get()](timer);
}
/**
*
* @brief Test nano timer for cases when the calling thread does not wait
*
* @param timer Timer to check
* @param timeout_in_ticks Determines the action to take when the timer has
* not expired.
* For TICKS_NONE, return immediately.
* For TICKS_UNLIMITED, wait as long as necessary.
* @param user_data_ptr Pointer to user data if the timer is expired
* it's set to timer->user_data. Otherwise it's set to NULL
*
* @return 1 if the thread waits for timer to expire and 0 otherwise
*/
static int _nano_timer_expire_wait(struct nano_timer *timer,
int32_t timeout_in_ticks,
void **user_data_ptr)
{
struct _nano_timeout *t = &timer->timeout_data;
/* check if the timer has expired */
if (t->delta_ticks_from_prev == -1) {
*user_data_ptr = timer->user_data;
timer->user_data = NULL;
/* if the thread should not wait, return immediately */
} else if (timeout_in_ticks == TICKS_NONE) {
*user_data_ptr = NULL;
} else {
return 1;
}
return 0;
}
void *nano_isr_timer_test(struct nano_timer *timer, int32_t timeout_in_ticks)
{
int key = irq_lock();
void *user_data;
if (_nano_timer_expire_wait(timer, timeout_in_ticks, &user_data)) {
/* since ISR can not wait, return NULL */
user_data = NULL;
}
irq_unlock(key);
return user_data;
}
void *nano_fiber_timer_test(struct nano_timer *timer, int32_t timeout_in_ticks)
{
int key = irq_lock();
struct _nano_timeout *t = &timer->timeout_data;
void *user_data;
if (_nano_timer_expire_wait(timer, timeout_in_ticks, &user_data)) {
t->tcs = _nanokernel.current;
_Swap(key);
key = irq_lock();
user_data = timer->user_data;
timer->user_data = NULL;
}
irq_unlock(key);
return user_data;
}
#define IDLE_TASK_TIMER_PEND(timer, key) \
do { \
_nanokernel.task_timeout = nano_timer_ticks_remain(timer); \
nano_cpu_atomic_idle(key); \
key = irq_lock(); \
} while (0)
#ifdef CONFIG_MICROKERNEL
extern void _task_nano_timer_pend_task(struct nano_timer *timer);
#define NANO_TASK_TIMER_PEND(timer, key) \
do { \
if (_IS_IDLE_TASK()) { \
IDLE_TASK_TIMER_PEND(timer, key); \
} else { \
_task_nano_timer_pend_task(timer); \
} \
} while (0)
#else
#define NANO_TASK_TIMER_PEND(timer, key) IDLE_TASK_TIMER_PEND(timer, key)
#endif
void *nano_task_timer_test(struct nano_timer *timer, int32_t timeout_in_ticks)
{
int key = irq_lock();
struct _nano_timeout *t = &timer->timeout_data;
void *user_data;
if (_nano_timer_expire_wait(timer, timeout_in_ticks, &user_data)) {
/* task goes to busy waiting loop */
while (t->delta_ticks_from_prev != -1) {
NANO_TASK_TIMER_PEND(timer, key);
}
user_data = timer->user_data;
timer->user_data = NULL;
}
irq_unlock(key);
return user_data;
}
void *nano_timer_test(struct nano_timer *timer, int32_t timeout_in_ticks)
{
static void *(*func[3])(struct nano_timer *, int32_t) = {
nano_isr_timer_test,
nano_fiber_timer_test,
nano_task_timer_test,
};
return func[sys_execution_context_type_get()](timer, timeout_in_ticks);
}
int32_t nano_timer_ticks_remain(struct nano_timer *timer)
{
int key = irq_lock();
int32_t remaining_ticks;
struct _nano_timeout *t = &timer->timeout_data;
sys_dlist_t *timeout_q = &_nanokernel.timeout_q;
struct _nano_timeout *iterator;
if (t->delta_ticks_from_prev == -1) {
remaining_ticks = 0;
} else {
/*
* As nanokernel timeouts are stored in a linked list with
* delta_ticks_from_prev, to get the actual number of ticks
* remaining for the timer, walk through the timeouts list
* and accumulate all the delta_ticks_from_prev values up to
* the timer.
*/
iterator =
(struct _nano_timeout *)sys_dlist_peek_head(timeout_q);
remaining_ticks = iterator->delta_ticks_from_prev;
while (iterator != t) {
iterator = (struct _nano_timeout *)sys_dlist_peek_next(
timeout_q, &iterator->node);
remaining_ticks += iterator->delta_ticks_from_prev;
}
}
irq_unlock(key);
return remaining_ticks;
}