342 lines
8.2 KiB
C
342 lines
8.2 KiB
C
/*
|
|
* Copyright (c) 2010-2015 Wind River Systems, Inc.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
*
|
|
* @brief Nanokernel dynamic-size FIFO queue object.
|
|
*
|
|
* This module provides the nanokernel FIFO object implementation, including
|
|
* the following APIs:
|
|
*
|
|
* nano_fifo_init
|
|
* nano_fiber_fifo_put, nano_task_fifo_put, nano_isr_fifo_put
|
|
* nano_fiber_fifo_get, nano_task_fifo_get, nano_isr_fifo_get
|
|
* nano_fiber_fifo_get_wait, nano_task_fifo_get_wait
|
|
*/
|
|
|
|
/*
|
|
* INTERNAL
|
|
* In some cases the compiler "alias" attribute is used to map two or more
|
|
* APIs to the same function, since they have identical implementations.
|
|
*/
|
|
|
|
#include <nano_private.h>
|
|
#include <toolchain.h>
|
|
#include <sections.h>
|
|
#include <wait_q.h>
|
|
|
|
/*
|
|
* INTERNAL
|
|
* Although the existing implementation will support invocation from an ISR
|
|
* context, for future flexibility, this API will be restricted from ISR
|
|
* level invocation.
|
|
*/
|
|
void nano_fifo_init(struct nano_fifo *fifo)
|
|
{
|
|
/*
|
|
* The wait queue and data queue occupy the same space since there cannot
|
|
* be both queued data and pending fibers in the FIFO. Care must be taken
|
|
* that, when one of the queues becomes empty, it is reset to a state
|
|
* that reflects an empty queue to both the data and wait queues.
|
|
*/
|
|
_nano_wait_q_init(&fifo->wait_q);
|
|
|
|
/*
|
|
* If the 'stat' field is a positive value, it indicates how many data
|
|
* elements reside in the FIFO. If the 'stat' field is a negative value,
|
|
* its absolute value indicates how many fibers are pending on the LIFO
|
|
* object. Thus a value of '0' indicates that there are no data elements
|
|
* in the LIFO _and_ there are no pending fibers.
|
|
*/
|
|
|
|
fifo->stat = 0;
|
|
|
|
DEBUG_TRACING_OBJ_INIT(struct nano_fifo *, fifo, _track_list_nano_fifo);
|
|
}
|
|
|
|
FUNC_ALIAS(_fifo_put_non_preemptible, nano_isr_fifo_put, void);
|
|
FUNC_ALIAS(_fifo_put_non_preemptible, nano_fiber_fifo_put, void);
|
|
|
|
/**
|
|
*
|
|
* @brief Internal routine to append data to a fifo
|
|
*
|
|
* @return N/A
|
|
*/
|
|
static inline void enqueue_data(struct nano_fifo *fifo, void *data)
|
|
{
|
|
*(void **)fifo->data_q.tail = data;
|
|
fifo->data_q.tail = data;
|
|
*(int *)data = 0;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Append an element to a fifo (no context switch)
|
|
*
|
|
* This routine adds an element to the end of a fifo object; it may be called
|
|
* from either either a fiber or an ISR context. A fiber pending on the fifo
|
|
* object will be made ready, but will NOT be scheduled to execute.
|
|
*
|
|
* If a fiber is waiting on the fifo, the address of the element is returned to
|
|
* the waiting fiber. Otherwise, the element is linked to the end of the list.
|
|
*
|
|
* @param fifo FIFO on which to interact.
|
|
* @param data Data to send.
|
|
*
|
|
* @return N/A
|
|
*
|
|
* INTERNAL
|
|
* This function is capable of supporting invocations from both a fiber and an
|
|
* ISR context. However, the nano_isr_fifo_put and nano_fiber_fifo_put aliases
|
|
* are created to support any required implementation differences in the future
|
|
* without introducing a source code migration issue.
|
|
*/
|
|
void _fifo_put_non_preemptible(struct nano_fifo *fifo, void *data)
|
|
{
|
|
unsigned int imask;
|
|
|
|
imask = irq_lock();
|
|
|
|
fifo->stat++;
|
|
if (fifo->stat <= 0) {
|
|
struct tcs *tcs = _nano_wait_q_remove_no_check(&fifo->wait_q);
|
|
_nano_timeout_abort(tcs);
|
|
fiberRtnValueSet(tcs, (unsigned int)data);
|
|
} else {
|
|
enqueue_data(fifo, data);
|
|
}
|
|
|
|
irq_unlock(imask);
|
|
}
|
|
|
|
void nano_task_fifo_put(struct nano_fifo *fifo, void *data)
|
|
{
|
|
unsigned int imask;
|
|
|
|
imask = irq_lock();
|
|
|
|
fifo->stat++;
|
|
if (fifo->stat <= 0) {
|
|
struct tcs *tcs = _nano_wait_q_remove_no_check(&fifo->wait_q);
|
|
_nano_timeout_abort(tcs);
|
|
fiberRtnValueSet(tcs, (unsigned int)data);
|
|
_Swap(imask);
|
|
return;
|
|
} else {
|
|
enqueue_data(fifo, data);
|
|
}
|
|
|
|
irq_unlock(imask);
|
|
}
|
|
|
|
|
|
void nano_fifo_put(struct nano_fifo *fifo, void *data)
|
|
{
|
|
static void (*func[3])(struct nano_fifo *fifo, void *data) = {
|
|
nano_isr_fifo_put, nano_fiber_fifo_put, nano_task_fifo_put
|
|
};
|
|
func[sys_execution_context_type_get()](fifo, data);
|
|
}
|
|
|
|
FUNC_ALIAS(_fifo_get, nano_isr_fifo_get, void *);
|
|
FUNC_ALIAS(_fifo_get, nano_fiber_fifo_get, void *);
|
|
FUNC_ALIAS(_fifo_get, nano_task_fifo_get, void *);
|
|
FUNC_ALIAS(_fifo_get, nano_fifo_get, void *);
|
|
|
|
/**
|
|
*
|
|
* @brief Internal routine to remove data from a fifo
|
|
*
|
|
* @return The data item removed
|
|
*/
|
|
static inline void *dequeue_data(struct nano_fifo *fifo)
|
|
{
|
|
void *data = fifo->data_q.head;
|
|
|
|
if (fifo->stat == 0) {
|
|
/*
|
|
* The data_q and wait_q occupy the same space and have the same
|
|
* format, and there is already an API for resetting the wait_q, so
|
|
* use it.
|
|
*/
|
|
_nano_wait_q_reset(&fifo->wait_q);
|
|
} else {
|
|
fifo->data_q.head = *(void **)data;
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
/**
|
|
* INTERNAL
|
|
* This function is capable of supporting invocations from fiber, task, and ISR
|
|
* execution contexts. However, the nano_isr_fifo_get, nano_task_fifo_get, and
|
|
* nano_fiber_fifo_get aliases are created to support any required
|
|
* implementation differences in the future without introducing a source code
|
|
* migration issue.
|
|
*/
|
|
void *_fifo_get(struct nano_fifo *fifo)
|
|
{
|
|
void *data = NULL;
|
|
unsigned int imask;
|
|
|
|
imask = irq_lock();
|
|
|
|
if (fifo->stat > 0) {
|
|
fifo->stat--;
|
|
data = dequeue_data(fifo);
|
|
}
|
|
irq_unlock(imask);
|
|
return data;
|
|
}
|
|
|
|
void *nano_fiber_fifo_get_wait(struct nano_fifo *fifo)
|
|
{
|
|
void *data;
|
|
unsigned int imask;
|
|
|
|
imask = irq_lock();
|
|
|
|
fifo->stat--;
|
|
if (fifo->stat < 0) {
|
|
_nano_wait_q_put(&fifo->wait_q);
|
|
data = (void *)_Swap(imask);
|
|
} else {
|
|
data = dequeue_data(fifo);
|
|
irq_unlock(imask);
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
void *nano_task_fifo_get_wait(struct nano_fifo *fifo)
|
|
{
|
|
void *data;
|
|
unsigned int imask;
|
|
|
|
/* spin until data is put onto the FIFO */
|
|
|
|
while (1) {
|
|
imask = irq_lock();
|
|
|
|
/*
|
|
* Predict that the branch will be taken to break out of the loop.
|
|
* There is little cost to a misprediction since that leads to idle.
|
|
*/
|
|
|
|
if (likely(fifo->stat > 0))
|
|
break;
|
|
|
|
/* see explanation in nano_stack.c:nano_task_stack_pop_wait() */
|
|
|
|
nano_cpu_atomic_idle(imask);
|
|
}
|
|
|
|
fifo->stat--;
|
|
data = dequeue_data(fifo);
|
|
irq_unlock(imask);
|
|
|
|
return data;
|
|
}
|
|
|
|
void *nano_fifo_get_wait(struct nano_fifo *fifo)
|
|
{
|
|
static void *(*func[3])(struct nano_fifo *fifo) = {
|
|
NULL, nano_fiber_fifo_get_wait, nano_task_fifo_get_wait
|
|
};
|
|
return func[sys_execution_context_type_get()](fifo);
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_NANO_TIMEOUTS
|
|
|
|
void *nano_fiber_fifo_get_wait_timeout(struct nano_fifo *fifo,
|
|
int32_t timeout_in_ticks)
|
|
{
|
|
unsigned int key;
|
|
void *data;
|
|
|
|
if (unlikely(TICKS_UNLIMITED == timeout_in_ticks)) {
|
|
return nano_fiber_fifo_get_wait(fifo);
|
|
}
|
|
|
|
if (unlikely(TICKS_NONE == timeout_in_ticks)) {
|
|
return nano_fiber_fifo_get(fifo);
|
|
}
|
|
|
|
key = irq_lock();
|
|
|
|
fifo->stat--;
|
|
if (fifo->stat < 0) {
|
|
_nano_timeout_add(_nanokernel.current, &fifo->wait_q, timeout_in_ticks);
|
|
_nano_wait_q_put(&fifo->wait_q);
|
|
data = (void *)_Swap(key);
|
|
} else {
|
|
data = dequeue_data(fifo);
|
|
irq_unlock(key);
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
void *nano_task_fifo_get_wait_timeout(struct nano_fifo *fifo,
|
|
int32_t timeout_in_ticks)
|
|
{
|
|
int64_t cur_ticks, limit;
|
|
unsigned int key;
|
|
void *data;
|
|
|
|
if (unlikely(TICKS_UNLIMITED == timeout_in_ticks)) {
|
|
return nano_task_fifo_get_wait(fifo);
|
|
}
|
|
|
|
if (unlikely(TICKS_NONE == timeout_in_ticks)) {
|
|
return nano_task_fifo_get(fifo);
|
|
}
|
|
|
|
key = irq_lock();
|
|
cur_ticks = nano_tick_get();
|
|
limit = cur_ticks + timeout_in_ticks;
|
|
|
|
while (cur_ticks < limit) {
|
|
|
|
/*
|
|
* Predict that the branch will be taken to break out of the loop.
|
|
* There is little cost to a misprediction since that leads to idle.
|
|
*/
|
|
|
|
if (likely(fifo->stat > 0)) {
|
|
fifo->stat--;
|
|
data = dequeue_data(fifo);
|
|
irq_unlock(key);
|
|
return data;
|
|
}
|
|
|
|
/* see explanation in nano_stack.c:nano_task_stack_pop_wait() */
|
|
|
|
nano_cpu_atomic_idle(key);
|
|
|
|
key = irq_lock();
|
|
cur_ticks = nano_tick_get();
|
|
}
|
|
|
|
irq_unlock(key);
|
|
return NULL;
|
|
}
|
|
#endif /* CONFIG_NANO_TIMEOUTS */
|