776 lines
20 KiB
C
776 lines
20 KiB
C
/*
|
|
* Copyright (c) 2016-2021 Nordic Semiconductor ASA
|
|
* Copyright (c) 2018 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <zephyr/init.h>
|
|
#include <soc.h>
|
|
#include <zephyr/drivers/clock_control.h>
|
|
#include <zephyr/drivers/clock_control/nrf_clock_control.h>
|
|
#include <zephyr/drivers/timer/system_timer.h>
|
|
#include <zephyr/drivers/timer/nrf_rtc_timer.h>
|
|
#include <zephyr/sys/util.h>
|
|
#include <zephyr/sys_clock.h>
|
|
#include <zephyr/sys/barrier.h>
|
|
#include <hal/nrf_rtc.h>
|
|
#include <zephyr/irq.h>
|
|
|
|
#define RTC_PRETICK (IS_ENABLED(CONFIG_SOC_NRF53_RTC_PRETICK) && \
|
|
IS_ENABLED(CONFIG_SOC_NRF5340_CPUNET))
|
|
|
|
#define EXT_CHAN_COUNT CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT
|
|
#define CHAN_COUNT (EXT_CHAN_COUNT + 1)
|
|
|
|
#define RTC NRF_RTC1
|
|
#define RTC_IRQn NRFX_IRQ_NUMBER_GET(RTC)
|
|
#define RTC_LABEL rtc1
|
|
#define CHAN_COUNT_MAX (RTC1_CC_NUM - (RTC_PRETICK ? 1 : 0))
|
|
|
|
BUILD_ASSERT(CHAN_COUNT <= CHAN_COUNT_MAX, "Not enough compare channels");
|
|
/* Ensure that counter driver for RTC1 is not enabled. */
|
|
BUILD_ASSERT(DT_NODE_HAS_STATUS(DT_NODELABEL(RTC_LABEL), disabled),
|
|
"Counter for RTC1 must be disabled");
|
|
|
|
#define COUNTER_BIT_WIDTH 24U
|
|
#define COUNTER_SPAN BIT(COUNTER_BIT_WIDTH)
|
|
#define COUNTER_MAX (COUNTER_SPAN - 1U)
|
|
#define COUNTER_HALF_SPAN (COUNTER_SPAN / 2U)
|
|
#define CYC_PER_TICK (sys_clock_hw_cycles_per_sec() \
|
|
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC)
|
|
#define MAX_TICKS ((COUNTER_HALF_SPAN - CYC_PER_TICK) / CYC_PER_TICK)
|
|
#define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK)
|
|
|
|
#define OVERFLOW_RISK_RANGE_END (COUNTER_SPAN / 16)
|
|
#define ANCHOR_RANGE_START (COUNTER_SPAN / 8)
|
|
#define ANCHOR_RANGE_END (7 * COUNTER_SPAN / 8)
|
|
#define TARGET_TIME_INVALID (UINT64_MAX)
|
|
|
|
extern void rtc_pretick_rtc1_isr_hook(void);
|
|
|
|
static volatile uint32_t overflow_cnt;
|
|
static volatile uint64_t anchor;
|
|
static uint64_t last_count;
|
|
static bool sys_busy;
|
|
|
|
struct z_nrf_rtc_timer_chan_data {
|
|
z_nrf_rtc_timer_compare_handler_t callback;
|
|
void *user_context;
|
|
volatile uint64_t target_time;
|
|
};
|
|
|
|
static struct z_nrf_rtc_timer_chan_data cc_data[CHAN_COUNT];
|
|
static atomic_t int_mask;
|
|
static atomic_t alloc_mask;
|
|
static atomic_t force_isr_mask;
|
|
|
|
static uint32_t counter_sub(uint32_t a, uint32_t b)
|
|
{
|
|
return (a - b) & COUNTER_MAX;
|
|
}
|
|
|
|
static void set_comparator(int32_t chan, uint32_t cyc)
|
|
{
|
|
nrf_rtc_cc_set(RTC, chan, cyc & COUNTER_MAX);
|
|
}
|
|
|
|
static bool event_check(int32_t chan)
|
|
{
|
|
return nrf_rtc_event_check(RTC, NRF_RTC_CHANNEL_EVENT_ADDR(chan));
|
|
}
|
|
|
|
static void event_clear(int32_t chan)
|
|
{
|
|
nrf_rtc_event_clear(RTC, NRF_RTC_CHANNEL_EVENT_ADDR(chan));
|
|
}
|
|
|
|
static void event_enable(int32_t chan)
|
|
{
|
|
nrf_rtc_event_enable(RTC, NRF_RTC_CHANNEL_INT_MASK(chan));
|
|
}
|
|
|
|
static void event_disable(int32_t chan)
|
|
{
|
|
nrf_rtc_event_disable(RTC, NRF_RTC_CHANNEL_INT_MASK(chan));
|
|
}
|
|
|
|
static uint32_t counter(void)
|
|
{
|
|
return nrf_rtc_counter_get(RTC);
|
|
}
|
|
|
|
static uint32_t absolute_time_to_cc(uint64_t absolute_time)
|
|
{
|
|
/* 24 least significant bits represent target CC value */
|
|
return absolute_time & COUNTER_MAX;
|
|
}
|
|
|
|
static uint32_t full_int_lock(void)
|
|
{
|
|
uint32_t mcu_critical_state;
|
|
|
|
if (IS_ENABLED(CONFIG_NRF_RTC_TIMER_LOCK_ZERO_LATENCY_IRQS)) {
|
|
mcu_critical_state = __get_PRIMASK();
|
|
__disable_irq();
|
|
} else {
|
|
mcu_critical_state = irq_lock();
|
|
}
|
|
|
|
return mcu_critical_state;
|
|
}
|
|
|
|
static void full_int_unlock(uint32_t mcu_critical_state)
|
|
{
|
|
if (IS_ENABLED(CONFIG_NRF_RTC_TIMER_LOCK_ZERO_LATENCY_IRQS)) {
|
|
__set_PRIMASK(mcu_critical_state);
|
|
} else {
|
|
irq_unlock(mcu_critical_state);
|
|
}
|
|
}
|
|
|
|
uint32_t z_nrf_rtc_timer_compare_evt_address_get(int32_t chan)
|
|
{
|
|
__ASSERT_NO_MSG(chan >= 0 && chan < CHAN_COUNT);
|
|
return nrf_rtc_event_address_get(RTC, nrf_rtc_compare_event_get(chan));
|
|
}
|
|
|
|
uint32_t z_nrf_rtc_timer_capture_task_address_get(int32_t chan)
|
|
{
|
|
#if defined(RTC_TASKS_CAPTURE_TASKS_CAPTURE_Msk)
|
|
__ASSERT_NO_MSG(chan >= 0 && chan < CHAN_COUNT);
|
|
if (chan == 0) {
|
|
return 0;
|
|
}
|
|
|
|
nrf_rtc_task_t task = offsetof(NRF_RTC_Type, TASKS_CAPTURE[chan]);
|
|
|
|
return nrf_rtc_task_address_get(RTC, task);
|
|
#else
|
|
ARG_UNUSED(chan);
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static bool compare_int_lock(int32_t chan)
|
|
{
|
|
atomic_val_t prev = atomic_and(&int_mask, ~BIT(chan));
|
|
|
|
nrf_rtc_int_disable(RTC, NRF_RTC_CHANNEL_INT_MASK(chan));
|
|
|
|
barrier_dmem_fence_full();
|
|
barrier_isync_fence_full();
|
|
|
|
return prev & BIT(chan);
|
|
}
|
|
|
|
|
|
bool z_nrf_rtc_timer_compare_int_lock(int32_t chan)
|
|
{
|
|
__ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
|
|
|
|
return compare_int_lock(chan);
|
|
}
|
|
|
|
static void compare_int_unlock(int32_t chan, bool key)
|
|
{
|
|
if (key) {
|
|
atomic_or(&int_mask, BIT(chan));
|
|
nrf_rtc_int_enable(RTC, NRF_RTC_CHANNEL_INT_MASK(chan));
|
|
if (atomic_get(&force_isr_mask) & BIT(chan)) {
|
|
NVIC_SetPendingIRQ(RTC_IRQn);
|
|
}
|
|
}
|
|
}
|
|
|
|
void z_nrf_rtc_timer_compare_int_unlock(int32_t chan, bool key)
|
|
{
|
|
__ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
|
|
|
|
compare_int_unlock(chan, key);
|
|
}
|
|
|
|
uint32_t z_nrf_rtc_timer_compare_read(int32_t chan)
|
|
{
|
|
__ASSERT_NO_MSG(chan >= 0 && chan < CHAN_COUNT);
|
|
|
|
return nrf_rtc_cc_get(RTC, chan);
|
|
}
|
|
|
|
uint64_t z_nrf_rtc_timer_get_ticks(k_timeout_t t)
|
|
{
|
|
uint64_t curr_time;
|
|
int64_t curr_tick;
|
|
int64_t result;
|
|
int64_t abs_ticks;
|
|
|
|
do {
|
|
curr_time = z_nrf_rtc_timer_read();
|
|
curr_tick = sys_clock_tick_get();
|
|
} while (curr_time != z_nrf_rtc_timer_read());
|
|
|
|
abs_ticks = Z_TICK_ABS(t.ticks);
|
|
if (abs_ticks < 0) {
|
|
/* relative timeout */
|
|
return (t.ticks > COUNTER_SPAN) ?
|
|
-EINVAL : (curr_time + t.ticks);
|
|
}
|
|
|
|
/* absolute timeout */
|
|
result = abs_ticks - curr_tick;
|
|
|
|
if (result > COUNTER_SPAN) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
return curr_time + result;
|
|
}
|
|
|
|
/** @brief Function safely sets an alarm.
|
|
*
|
|
* It assumes that provided value is at most COUNTER_HALF_SPAN cycles from now
|
|
* (other values are considered to be from the past). It detects late setting
|
|
* and properly adjusts CC values that are too near in the future to guarantee
|
|
* triggering a COMPARE event soon, not after 512 seconds when the RTC wraps
|
|
* around first.
|
|
*
|
|
* @param[in] chan A channel for which a new CC value is to be set.
|
|
*
|
|
* @param[in] req_cc Requested CC register value to be set.
|
|
*
|
|
* @param[in] exact Use @c false to allow CC adjustment if @c req_cc value is
|
|
* close to the current value of the timer.
|
|
* Use @c true to disallow CC adjustment. The function can
|
|
* fail with -EINVAL result if @p req_cc is too close to the
|
|
* current value.
|
|
*
|
|
* @retval 0 The requested CC has been set successfully.
|
|
* @retval -EINVAL The requested CC value could not be reliably set.
|
|
*/
|
|
static int set_alarm(int32_t chan, uint32_t req_cc, bool exact)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* Ensure that the value exposed in this driver API is consistent with
|
|
* assumptions of this function.
|
|
*/
|
|
BUILD_ASSERT(NRF_RTC_TIMER_MAX_SCHEDULE_SPAN <= COUNTER_HALF_SPAN);
|
|
|
|
/* According to product specifications, when the current counter value
|
|
* is N, a value of N+2 written to the CC register is guaranteed to
|
|
* trigger a COMPARE event at N+2, but tests show that this compare
|
|
* value can be missed when the previous CC value is N+1 and the write
|
|
* occurs in the second half of the RTC clock cycle (such situation can
|
|
* be provoked by test_next_cycle_timeouts in the nrf_rtc_timer suite).
|
|
* This never happens when the written value is N+3. Use 3 cycles as
|
|
* the nearest possible scheduling then.
|
|
*/
|
|
enum { MIN_CYCLES_FROM_NOW = 3 };
|
|
uint32_t cc_val = req_cc;
|
|
uint32_t cc_inc = MIN_CYCLES_FROM_NOW;
|
|
|
|
/* Disable event routing for the channel to avoid getting a COMPARE
|
|
* event for the previous CC value before the new one takes effect
|
|
* (however, even if such spurious event was generated, it would be
|
|
* properly filtered out in process_channel(), where the target time
|
|
* is checked).
|
|
* Clear also the event as it may already be generated at this point.
|
|
*/
|
|
event_disable(chan);
|
|
event_clear(chan);
|
|
|
|
for (;;) {
|
|
uint32_t now;
|
|
|
|
set_comparator(chan, cc_val);
|
|
/* Enable event routing after the required CC value was set.
|
|
* Even though the above operation may get repeated (see below),
|
|
* there is no need to disable event routing in every iteration
|
|
* of the loop, as the COMPARE event resulting from any attempt
|
|
* of setting the CC register is acceptable (as mentioned above,
|
|
* process_channel() does the proper filtering).
|
|
*/
|
|
event_enable(chan);
|
|
|
|
now = counter();
|
|
|
|
/* Check if the CC register was successfully set to a value
|
|
* that will for sure trigger a COMPARE event as expected.
|
|
* If not, try again, adjusting the CC value accordingly.
|
|
* Increase the CC value by a larger number of cycles in each
|
|
* trial to avoid spending too much time in this loop if it
|
|
* continuously gets interrupted and delayed by something.
|
|
*/
|
|
if (counter_sub(cc_val, now + MIN_CYCLES_FROM_NOW) >
|
|
(COUNTER_HALF_SPAN - MIN_CYCLES_FROM_NOW)) {
|
|
/* If the COMPARE event turns out to be already
|
|
* generated, check if the loop can be finished.
|
|
*/
|
|
if (event_check(chan)) {
|
|
/* If the current counter value has not yet
|
|
* reached the requested CC value, the event
|
|
* must come from the previously set CC value
|
|
* (the alarm is apparently rescheduled).
|
|
* The event needs to be cleared then and the
|
|
* loop needs to be continued.
|
|
*/
|
|
now = counter();
|
|
if (counter_sub(now, req_cc) > COUNTER_HALF_SPAN) {
|
|
event_clear(chan);
|
|
if (exact) {
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
} else {
|
|
break;
|
|
}
|
|
} else if (exact) {
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
cc_val = now + cc_inc;
|
|
cc_inc++;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int compare_set_nolocks(int32_t chan, uint64_t target_time,
|
|
z_nrf_rtc_timer_compare_handler_t handler,
|
|
void *user_data, bool exact)
|
|
{
|
|
int ret = 0;
|
|
uint32_t cc_value = absolute_time_to_cc(target_time);
|
|
uint64_t curr_time = z_nrf_rtc_timer_read();
|
|
|
|
if (curr_time < target_time) {
|
|
if (target_time - curr_time > COUNTER_HALF_SPAN) {
|
|
/* Target time is too distant. */
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (target_time != cc_data[chan].target_time) {
|
|
/* Target time is valid and is different than currently set.
|
|
* Set CC value.
|
|
*/
|
|
ret = set_alarm(chan, cc_value, exact);
|
|
}
|
|
} else if (!exact) {
|
|
/* Force ISR handling when exiting from critical section. */
|
|
atomic_or(&force_isr_mask, BIT(chan));
|
|
} else {
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
if (ret == 0) {
|
|
cc_data[chan].target_time = target_time;
|
|
cc_data[chan].callback = handler;
|
|
cc_data[chan].user_context = user_data;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int compare_set(int32_t chan, uint64_t target_time,
|
|
z_nrf_rtc_timer_compare_handler_t handler,
|
|
void *user_data, bool exact)
|
|
{
|
|
bool key;
|
|
|
|
key = compare_int_lock(chan);
|
|
|
|
int ret = compare_set_nolocks(chan, target_time, handler, user_data, exact);
|
|
|
|
compare_int_unlock(chan, key);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int z_nrf_rtc_timer_set(int32_t chan, uint64_t target_time,
|
|
z_nrf_rtc_timer_compare_handler_t handler,
|
|
void *user_data)
|
|
{
|
|
__ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
|
|
|
|
return compare_set(chan, target_time, handler, user_data, false);
|
|
}
|
|
|
|
int z_nrf_rtc_timer_exact_set(int32_t chan, uint64_t target_time,
|
|
z_nrf_rtc_timer_compare_handler_t handler,
|
|
void *user_data)
|
|
{
|
|
__ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
|
|
|
|
return compare_set(chan, target_time, handler, user_data, true);
|
|
}
|
|
|
|
void z_nrf_rtc_timer_abort(int32_t chan)
|
|
{
|
|
__ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
|
|
|
|
bool key = compare_int_lock(chan);
|
|
|
|
cc_data[chan].target_time = TARGET_TIME_INVALID;
|
|
event_clear(chan);
|
|
event_disable(chan);
|
|
(void)atomic_and(&force_isr_mask, ~BIT(chan));
|
|
|
|
compare_int_unlock(chan, key);
|
|
}
|
|
|
|
uint64_t z_nrf_rtc_timer_read(void)
|
|
{
|
|
uint64_t val = ((uint64_t)overflow_cnt) << COUNTER_BIT_WIDTH;
|
|
|
|
barrier_dmem_fence_full();
|
|
|
|
uint32_t cntr = counter();
|
|
|
|
val += cntr;
|
|
|
|
if (cntr < OVERFLOW_RISK_RANGE_END) {
|
|
/* `overflow_cnt` can have incorrect value due to still unhandled overflow or
|
|
* due to possibility that this code preempted overflow interrupt before final write
|
|
* of `overflow_cnt`. Update of `anchor` occurs far in time from this moment, so
|
|
* `anchor` is considered valid and stable. Because of this timing there is no risk
|
|
* of incorrect `anchor` value caused by non-atomic read of 64-bit `anchor`.
|
|
*/
|
|
if (val < anchor) {
|
|
/* Unhandled overflow, detected, let's add correction */
|
|
val += COUNTER_SPAN;
|
|
}
|
|
} else {
|
|
/* `overflow_cnt` is considered valid and stable in this range, no need to
|
|
* check validity using `anchor`
|
|
*/
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static inline bool in_anchor_range(uint32_t cc_value)
|
|
{
|
|
return (cc_value >= ANCHOR_RANGE_START) && (cc_value < ANCHOR_RANGE_END);
|
|
}
|
|
|
|
static inline void anchor_update(uint32_t cc_value)
|
|
{
|
|
/* Update anchor when far from overflow */
|
|
if (in_anchor_range(cc_value)) {
|
|
/* In this range `overflow_cnt` is considered valid and stable.
|
|
* Write of 64-bit `anchor` is non atomic. However it happens
|
|
* far in time from the moment the `anchor` is read in
|
|
* `z_nrf_rtc_timer_read`.
|
|
*/
|
|
anchor = (((uint64_t)overflow_cnt) << COUNTER_BIT_WIDTH) + cc_value;
|
|
}
|
|
}
|
|
|
|
static void sys_clock_timeout_handler(int32_t chan,
|
|
uint64_t expire_time,
|
|
void *user_data)
|
|
{
|
|
uint32_t cc_value = absolute_time_to_cc(expire_time);
|
|
uint32_t dticks = (uint32_t)(expire_time - last_count) / CYC_PER_TICK;
|
|
|
|
last_count += dticks * CYC_PER_TICK;
|
|
|
|
anchor_update(cc_value);
|
|
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
|
|
/* protection is not needed because we are in the RTC interrupt
|
|
* so it won't get preempted by the interrupt.
|
|
*/
|
|
compare_set(chan, last_count + CYC_PER_TICK,
|
|
sys_clock_timeout_handler, NULL, false);
|
|
}
|
|
|
|
sys_clock_announce(dticks);
|
|
}
|
|
|
|
static bool channel_processing_check_and_clear(int32_t chan)
|
|
{
|
|
if (nrf_rtc_int_enable_check(RTC, NRF_RTC_CHANNEL_INT_MASK(chan))) {
|
|
/* The processing of channel can be caused by CC match
|
|
* or be forced.
|
|
*/
|
|
if ((atomic_and(&force_isr_mask, ~BIT(chan)) & BIT(chan)) ||
|
|
event_check(chan)) {
|
|
event_clear(chan);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void process_channel(int32_t chan)
|
|
{
|
|
if (channel_processing_check_and_clear(chan)) {
|
|
void *user_context;
|
|
uint32_t mcu_critical_state;
|
|
uint64_t curr_time;
|
|
uint64_t expire_time;
|
|
z_nrf_rtc_timer_compare_handler_t handler = NULL;
|
|
|
|
curr_time = z_nrf_rtc_timer_read();
|
|
|
|
/* This critical section is used to provide atomic access to
|
|
* cc_data structure and prevent higher priority contexts
|
|
* (including ZLIs) from overwriting it.
|
|
*/
|
|
mcu_critical_state = full_int_lock();
|
|
|
|
/* If target_time is in the past or is equal to current time
|
|
* value, execute the handler.
|
|
*/
|
|
expire_time = cc_data[chan].target_time;
|
|
if (curr_time >= expire_time) {
|
|
handler = cc_data[chan].callback;
|
|
user_context = cc_data[chan].user_context;
|
|
cc_data[chan].callback = NULL;
|
|
cc_data[chan].target_time = TARGET_TIME_INVALID;
|
|
event_disable(chan);
|
|
/* Because of the way set_alarm() sets the CC register,
|
|
* it may turn out that another COMPARE event has been
|
|
* generated for the same alarm. Make sure the event
|
|
* is cleared, so that the ISR is not executed again
|
|
* unnecessarily.
|
|
*/
|
|
event_clear(chan);
|
|
}
|
|
|
|
full_int_unlock(mcu_critical_state);
|
|
|
|
if (handler) {
|
|
handler(chan, expire_time, user_context);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Note: this function has public linkage, and MUST have this
|
|
* particular name. The platform architecture itself doesn't care,
|
|
* but there is a test (tests/arch/arm_irq_vector_table) that needs
|
|
* to find it to it can set it in a custom vector table. Should
|
|
* probably better abstract that at some point (e.g. query and reset
|
|
* it by pointer at runtime, maybe?) so we don't have this leaky
|
|
* symbol.
|
|
*/
|
|
void rtc_nrf_isr(const void *arg)
|
|
{
|
|
ARG_UNUSED(arg);
|
|
|
|
if (RTC_PRETICK) {
|
|
rtc_pretick_rtc1_isr_hook();
|
|
}
|
|
|
|
if (nrf_rtc_int_enable_check(RTC, NRF_RTC_INT_OVERFLOW_MASK) &&
|
|
nrf_rtc_event_check(RTC, NRF_RTC_EVENT_OVERFLOW)) {
|
|
nrf_rtc_event_clear(RTC, NRF_RTC_EVENT_OVERFLOW);
|
|
overflow_cnt++;
|
|
}
|
|
|
|
for (int32_t chan = 0; chan < CHAN_COUNT; chan++) {
|
|
process_channel(chan);
|
|
}
|
|
}
|
|
|
|
int32_t z_nrf_rtc_timer_chan_alloc(void)
|
|
{
|
|
int32_t chan;
|
|
atomic_val_t prev;
|
|
do {
|
|
chan = alloc_mask ? 31 - __builtin_clz(alloc_mask) : -1;
|
|
if (chan < 0) {
|
|
return -ENOMEM;
|
|
}
|
|
prev = atomic_and(&alloc_mask, ~BIT(chan));
|
|
} while (!(prev & BIT(chan)));
|
|
|
|
return chan;
|
|
}
|
|
|
|
void z_nrf_rtc_timer_chan_free(int32_t chan)
|
|
{
|
|
__ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
|
|
|
|
atomic_or(&alloc_mask, BIT(chan));
|
|
}
|
|
|
|
|
|
int z_nrf_rtc_timer_trigger_overflow(void)
|
|
{
|
|
uint32_t mcu_critical_state;
|
|
int err = 0;
|
|
|
|
if (!IS_ENABLED(CONFIG_NRF_RTC_TIMER_TRIGGER_OVERFLOW) ||
|
|
(CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT > 0)) {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
mcu_critical_state = full_int_lock();
|
|
if (sys_busy) {
|
|
err = -EBUSY;
|
|
goto bail;
|
|
}
|
|
|
|
if (counter() >= (COUNTER_SPAN - 100)) {
|
|
err = -EAGAIN;
|
|
goto bail;
|
|
}
|
|
|
|
nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_TRIGGER_OVERFLOW);
|
|
k_busy_wait(80);
|
|
|
|
uint64_t now = z_nrf_rtc_timer_read();
|
|
|
|
if (err == 0) {
|
|
sys_clock_timeout_handler(0, now, NULL);
|
|
}
|
|
bail:
|
|
full_int_unlock(mcu_critical_state);
|
|
|
|
return err;
|
|
}
|
|
|
|
void sys_clock_set_timeout(int32_t ticks, bool idle)
|
|
{
|
|
ARG_UNUSED(idle);
|
|
uint32_t cyc;
|
|
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
|
|
return;
|
|
}
|
|
|
|
if (ticks == K_TICKS_FOREVER) {
|
|
cyc = MAX_TICKS * CYC_PER_TICK;
|
|
sys_busy = false;
|
|
} else {
|
|
/* Value of ticks can be zero or negative, what means "announce
|
|
* the next tick" (the same as ticks equal to 1).
|
|
*/
|
|
cyc = CLAMP(ticks, 1, (int32_t)MAX_TICKS);
|
|
cyc *= CYC_PER_TICK;
|
|
sys_busy = true;
|
|
}
|
|
|
|
uint32_t unannounced = z_nrf_rtc_timer_read() - last_count;
|
|
|
|
/* If we haven't announced for more than half the 24-bit wrap
|
|
* duration, then force an announce to avoid loss of a wrap
|
|
* event. This can happen if new timeouts keep being set
|
|
* before the existing one triggers the interrupt.
|
|
*/
|
|
if (unannounced >= COUNTER_HALF_SPAN) {
|
|
cyc = 0;
|
|
}
|
|
|
|
/* Get the cycles from last_count to the tick boundary after
|
|
* the requested ticks have passed starting now.
|
|
*/
|
|
cyc += unannounced;
|
|
cyc = DIV_ROUND_UP(cyc, CYC_PER_TICK) * CYC_PER_TICK;
|
|
|
|
/* Due to elapsed time the calculation above might produce a
|
|
* duration that laps the counter. Don't let it.
|
|
* This limitation also guarantees that the anchor will be properly
|
|
* updated before every overflow (see anchor_update()).
|
|
*/
|
|
if (cyc > MAX_CYCLES) {
|
|
cyc = MAX_CYCLES;
|
|
}
|
|
|
|
uint64_t target_time = cyc + last_count;
|
|
|
|
compare_set(0, target_time, sys_clock_timeout_handler, NULL, false);
|
|
}
|
|
|
|
uint32_t sys_clock_elapsed(void)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
|
|
return 0;
|
|
}
|
|
|
|
return (z_nrf_rtc_timer_read() - last_count) / CYC_PER_TICK;
|
|
}
|
|
|
|
uint32_t sys_clock_cycle_get_32(void)
|
|
{
|
|
return (uint32_t)z_nrf_rtc_timer_read();
|
|
}
|
|
|
|
static void int_event_disable_rtc(void)
|
|
{
|
|
uint32_t mask = NRF_RTC_INT_TICK_MASK |
|
|
NRF_RTC_INT_OVERFLOW_MASK |
|
|
NRF_RTC_INT_COMPARE0_MASK |
|
|
NRF_RTC_INT_COMPARE1_MASK |
|
|
NRF_RTC_INT_COMPARE2_MASK |
|
|
NRF_RTC_INT_COMPARE3_MASK;
|
|
|
|
/* Reset interrupt enabling to expected reset values */
|
|
nrf_rtc_int_disable(RTC, mask);
|
|
|
|
/* Reset event routing enabling to expected reset values */
|
|
nrf_rtc_event_disable(RTC, mask);
|
|
}
|
|
|
|
void sys_clock_disable(void)
|
|
{
|
|
nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_STOP);
|
|
irq_disable(RTC_IRQn);
|
|
int_event_disable_rtc();
|
|
NVIC_ClearPendingIRQ(RTC_IRQn);
|
|
}
|
|
|
|
static int sys_clock_driver_init(void)
|
|
{
|
|
static const enum nrf_lfclk_start_mode mode =
|
|
IS_ENABLED(CONFIG_SYSTEM_CLOCK_NO_WAIT) ?
|
|
CLOCK_CONTROL_NRF_LF_START_NOWAIT :
|
|
(IS_ENABLED(CONFIG_SYSTEM_CLOCK_WAIT_FOR_AVAILABILITY) ?
|
|
CLOCK_CONTROL_NRF_LF_START_AVAILABLE :
|
|
CLOCK_CONTROL_NRF_LF_START_STABLE);
|
|
|
|
int_event_disable_rtc();
|
|
|
|
/* TODO: replace with counter driver to access RTC */
|
|
nrf_rtc_prescaler_set(RTC, 0);
|
|
for (int32_t chan = 0; chan < CHAN_COUNT; chan++) {
|
|
cc_data[chan].target_time = TARGET_TIME_INVALID;
|
|
nrf_rtc_int_enable(RTC, NRF_RTC_CHANNEL_INT_MASK(chan));
|
|
}
|
|
|
|
nrf_rtc_int_enable(RTC, NRF_RTC_INT_OVERFLOW_MASK);
|
|
|
|
NVIC_ClearPendingIRQ(RTC_IRQn);
|
|
|
|
IRQ_CONNECT(RTC_IRQn, DT_IRQ(DT_NODELABEL(RTC_LABEL), priority),
|
|
rtc_nrf_isr, 0, 0);
|
|
irq_enable(RTC_IRQn);
|
|
|
|
nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_CLEAR);
|
|
nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_START);
|
|
|
|
int_mask = BIT_MASK(CHAN_COUNT);
|
|
if (CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT) {
|
|
alloc_mask = BIT_MASK(EXT_CHAN_COUNT) << 1;
|
|
}
|
|
|
|
uint32_t initial_timeout = IS_ENABLED(CONFIG_TICKLESS_KERNEL) ?
|
|
MAX_CYCLES : CYC_PER_TICK;
|
|
|
|
compare_set(0, initial_timeout, sys_clock_timeout_handler, NULL, false);
|
|
|
|
z_nrf_clock_control_lf_on(mode);
|
|
|
|
return 0;
|
|
}
|
|
|
|
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
|
|
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);
|