zephyr/drivers/timer/nrf_rtc_timer.c

776 lines
20 KiB
C

/*
* Copyright (c) 2016-2021 Nordic Semiconductor ASA
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/init.h>
#include <soc.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/nrf_clock_control.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/drivers/timer/nrf_rtc_timer.h>
#include <zephyr/sys/util.h>
#include <zephyr/sys_clock.h>
#include <zephyr/sys/barrier.h>
#include <hal/nrf_rtc.h>
#include <zephyr/irq.h>
#define RTC_PRETICK (IS_ENABLED(CONFIG_SOC_NRF53_RTC_PRETICK) && \
IS_ENABLED(CONFIG_SOC_NRF5340_CPUNET))
#define EXT_CHAN_COUNT CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT
#define CHAN_COUNT (EXT_CHAN_COUNT + 1)
#define RTC NRF_RTC1
#define RTC_IRQn NRFX_IRQ_NUMBER_GET(RTC)
#define RTC_LABEL rtc1
#define CHAN_COUNT_MAX (RTC1_CC_NUM - (RTC_PRETICK ? 1 : 0))
BUILD_ASSERT(CHAN_COUNT <= CHAN_COUNT_MAX, "Not enough compare channels");
/* Ensure that counter driver for RTC1 is not enabled. */
BUILD_ASSERT(DT_NODE_HAS_STATUS(DT_NODELABEL(RTC_LABEL), disabled),
"Counter for RTC1 must be disabled");
#define COUNTER_BIT_WIDTH 24U
#define COUNTER_SPAN BIT(COUNTER_BIT_WIDTH)
#define COUNTER_MAX (COUNTER_SPAN - 1U)
#define COUNTER_HALF_SPAN (COUNTER_SPAN / 2U)
#define CYC_PER_TICK (sys_clock_hw_cycles_per_sec() \
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC)
#define MAX_TICKS ((COUNTER_HALF_SPAN - CYC_PER_TICK) / CYC_PER_TICK)
#define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK)
#define OVERFLOW_RISK_RANGE_END (COUNTER_SPAN / 16)
#define ANCHOR_RANGE_START (COUNTER_SPAN / 8)
#define ANCHOR_RANGE_END (7 * COUNTER_SPAN / 8)
#define TARGET_TIME_INVALID (UINT64_MAX)
extern void rtc_pretick_rtc1_isr_hook(void);
static volatile uint32_t overflow_cnt;
static volatile uint64_t anchor;
static uint64_t last_count;
static bool sys_busy;
struct z_nrf_rtc_timer_chan_data {
z_nrf_rtc_timer_compare_handler_t callback;
void *user_context;
volatile uint64_t target_time;
};
static struct z_nrf_rtc_timer_chan_data cc_data[CHAN_COUNT];
static atomic_t int_mask;
static atomic_t alloc_mask;
static atomic_t force_isr_mask;
static uint32_t counter_sub(uint32_t a, uint32_t b)
{
return (a - b) & COUNTER_MAX;
}
static void set_comparator(int32_t chan, uint32_t cyc)
{
nrf_rtc_cc_set(RTC, chan, cyc & COUNTER_MAX);
}
static bool event_check(int32_t chan)
{
return nrf_rtc_event_check(RTC, NRF_RTC_CHANNEL_EVENT_ADDR(chan));
}
static void event_clear(int32_t chan)
{
nrf_rtc_event_clear(RTC, NRF_RTC_CHANNEL_EVENT_ADDR(chan));
}
static void event_enable(int32_t chan)
{
nrf_rtc_event_enable(RTC, NRF_RTC_CHANNEL_INT_MASK(chan));
}
static void event_disable(int32_t chan)
{
nrf_rtc_event_disable(RTC, NRF_RTC_CHANNEL_INT_MASK(chan));
}
static uint32_t counter(void)
{
return nrf_rtc_counter_get(RTC);
}
static uint32_t absolute_time_to_cc(uint64_t absolute_time)
{
/* 24 least significant bits represent target CC value */
return absolute_time & COUNTER_MAX;
}
static uint32_t full_int_lock(void)
{
uint32_t mcu_critical_state;
if (IS_ENABLED(CONFIG_NRF_RTC_TIMER_LOCK_ZERO_LATENCY_IRQS)) {
mcu_critical_state = __get_PRIMASK();
__disable_irq();
} else {
mcu_critical_state = irq_lock();
}
return mcu_critical_state;
}
static void full_int_unlock(uint32_t mcu_critical_state)
{
if (IS_ENABLED(CONFIG_NRF_RTC_TIMER_LOCK_ZERO_LATENCY_IRQS)) {
__set_PRIMASK(mcu_critical_state);
} else {
irq_unlock(mcu_critical_state);
}
}
uint32_t z_nrf_rtc_timer_compare_evt_address_get(int32_t chan)
{
__ASSERT_NO_MSG(chan >= 0 && chan < CHAN_COUNT);
return nrf_rtc_event_address_get(RTC, nrf_rtc_compare_event_get(chan));
}
uint32_t z_nrf_rtc_timer_capture_task_address_get(int32_t chan)
{
#if defined(RTC_TASKS_CAPTURE_TASKS_CAPTURE_Msk)
__ASSERT_NO_MSG(chan >= 0 && chan < CHAN_COUNT);
if (chan == 0) {
return 0;
}
nrf_rtc_task_t task = offsetof(NRF_RTC_Type, TASKS_CAPTURE[chan]);
return nrf_rtc_task_address_get(RTC, task);
#else
ARG_UNUSED(chan);
return 0;
#endif
}
static bool compare_int_lock(int32_t chan)
{
atomic_val_t prev = atomic_and(&int_mask, ~BIT(chan));
nrf_rtc_int_disable(RTC, NRF_RTC_CHANNEL_INT_MASK(chan));
barrier_dmem_fence_full();
barrier_isync_fence_full();
return prev & BIT(chan);
}
bool z_nrf_rtc_timer_compare_int_lock(int32_t chan)
{
__ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
return compare_int_lock(chan);
}
static void compare_int_unlock(int32_t chan, bool key)
{
if (key) {
atomic_or(&int_mask, BIT(chan));
nrf_rtc_int_enable(RTC, NRF_RTC_CHANNEL_INT_MASK(chan));
if (atomic_get(&force_isr_mask) & BIT(chan)) {
NVIC_SetPendingIRQ(RTC_IRQn);
}
}
}
void z_nrf_rtc_timer_compare_int_unlock(int32_t chan, bool key)
{
__ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
compare_int_unlock(chan, key);
}
uint32_t z_nrf_rtc_timer_compare_read(int32_t chan)
{
__ASSERT_NO_MSG(chan >= 0 && chan < CHAN_COUNT);
return nrf_rtc_cc_get(RTC, chan);
}
uint64_t z_nrf_rtc_timer_get_ticks(k_timeout_t t)
{
uint64_t curr_time;
int64_t curr_tick;
int64_t result;
int64_t abs_ticks;
do {
curr_time = z_nrf_rtc_timer_read();
curr_tick = sys_clock_tick_get();
} while (curr_time != z_nrf_rtc_timer_read());
abs_ticks = Z_TICK_ABS(t.ticks);
if (abs_ticks < 0) {
/* relative timeout */
return (t.ticks > COUNTER_SPAN) ?
-EINVAL : (curr_time + t.ticks);
}
/* absolute timeout */
result = abs_ticks - curr_tick;
if (result > COUNTER_SPAN) {
return -EINVAL;
}
return curr_time + result;
}
/** @brief Function safely sets an alarm.
*
* It assumes that provided value is at most COUNTER_HALF_SPAN cycles from now
* (other values are considered to be from the past). It detects late setting
* and properly adjusts CC values that are too near in the future to guarantee
* triggering a COMPARE event soon, not after 512 seconds when the RTC wraps
* around first.
*
* @param[in] chan A channel for which a new CC value is to be set.
*
* @param[in] req_cc Requested CC register value to be set.
*
* @param[in] exact Use @c false to allow CC adjustment if @c req_cc value is
* close to the current value of the timer.
* Use @c true to disallow CC adjustment. The function can
* fail with -EINVAL result if @p req_cc is too close to the
* current value.
*
* @retval 0 The requested CC has been set successfully.
* @retval -EINVAL The requested CC value could not be reliably set.
*/
static int set_alarm(int32_t chan, uint32_t req_cc, bool exact)
{
int ret = 0;
/* Ensure that the value exposed in this driver API is consistent with
* assumptions of this function.
*/
BUILD_ASSERT(NRF_RTC_TIMER_MAX_SCHEDULE_SPAN <= COUNTER_HALF_SPAN);
/* According to product specifications, when the current counter value
* is N, a value of N+2 written to the CC register is guaranteed to
* trigger a COMPARE event at N+2, but tests show that this compare
* value can be missed when the previous CC value is N+1 and the write
* occurs in the second half of the RTC clock cycle (such situation can
* be provoked by test_next_cycle_timeouts in the nrf_rtc_timer suite).
* This never happens when the written value is N+3. Use 3 cycles as
* the nearest possible scheduling then.
*/
enum { MIN_CYCLES_FROM_NOW = 3 };
uint32_t cc_val = req_cc;
uint32_t cc_inc = MIN_CYCLES_FROM_NOW;
/* Disable event routing for the channel to avoid getting a COMPARE
* event for the previous CC value before the new one takes effect
* (however, even if such spurious event was generated, it would be
* properly filtered out in process_channel(), where the target time
* is checked).
* Clear also the event as it may already be generated at this point.
*/
event_disable(chan);
event_clear(chan);
for (;;) {
uint32_t now;
set_comparator(chan, cc_val);
/* Enable event routing after the required CC value was set.
* Even though the above operation may get repeated (see below),
* there is no need to disable event routing in every iteration
* of the loop, as the COMPARE event resulting from any attempt
* of setting the CC register is acceptable (as mentioned above,
* process_channel() does the proper filtering).
*/
event_enable(chan);
now = counter();
/* Check if the CC register was successfully set to a value
* that will for sure trigger a COMPARE event as expected.
* If not, try again, adjusting the CC value accordingly.
* Increase the CC value by a larger number of cycles in each
* trial to avoid spending too much time in this loop if it
* continuously gets interrupted and delayed by something.
*/
if (counter_sub(cc_val, now + MIN_CYCLES_FROM_NOW) >
(COUNTER_HALF_SPAN - MIN_CYCLES_FROM_NOW)) {
/* If the COMPARE event turns out to be already
* generated, check if the loop can be finished.
*/
if (event_check(chan)) {
/* If the current counter value has not yet
* reached the requested CC value, the event
* must come from the previously set CC value
* (the alarm is apparently rescheduled).
* The event needs to be cleared then and the
* loop needs to be continued.
*/
now = counter();
if (counter_sub(now, req_cc) > COUNTER_HALF_SPAN) {
event_clear(chan);
if (exact) {
ret = -EINVAL;
break;
}
} else {
break;
}
} else if (exact) {
ret = -EINVAL;
break;
}
cc_val = now + cc_inc;
cc_inc++;
} else {
break;
}
}
return ret;
}
static int compare_set_nolocks(int32_t chan, uint64_t target_time,
z_nrf_rtc_timer_compare_handler_t handler,
void *user_data, bool exact)
{
int ret = 0;
uint32_t cc_value = absolute_time_to_cc(target_time);
uint64_t curr_time = z_nrf_rtc_timer_read();
if (curr_time < target_time) {
if (target_time - curr_time > COUNTER_HALF_SPAN) {
/* Target time is too distant. */
return -EINVAL;
}
if (target_time != cc_data[chan].target_time) {
/* Target time is valid and is different than currently set.
* Set CC value.
*/
ret = set_alarm(chan, cc_value, exact);
}
} else if (!exact) {
/* Force ISR handling when exiting from critical section. */
atomic_or(&force_isr_mask, BIT(chan));
} else {
ret = -EINVAL;
}
if (ret == 0) {
cc_data[chan].target_time = target_time;
cc_data[chan].callback = handler;
cc_data[chan].user_context = user_data;
}
return ret;
}
static int compare_set(int32_t chan, uint64_t target_time,
z_nrf_rtc_timer_compare_handler_t handler,
void *user_data, bool exact)
{
bool key;
key = compare_int_lock(chan);
int ret = compare_set_nolocks(chan, target_time, handler, user_data, exact);
compare_int_unlock(chan, key);
return ret;
}
int z_nrf_rtc_timer_set(int32_t chan, uint64_t target_time,
z_nrf_rtc_timer_compare_handler_t handler,
void *user_data)
{
__ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
return compare_set(chan, target_time, handler, user_data, false);
}
int z_nrf_rtc_timer_exact_set(int32_t chan, uint64_t target_time,
z_nrf_rtc_timer_compare_handler_t handler,
void *user_data)
{
__ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
return compare_set(chan, target_time, handler, user_data, true);
}
void z_nrf_rtc_timer_abort(int32_t chan)
{
__ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
bool key = compare_int_lock(chan);
cc_data[chan].target_time = TARGET_TIME_INVALID;
event_clear(chan);
event_disable(chan);
(void)atomic_and(&force_isr_mask, ~BIT(chan));
compare_int_unlock(chan, key);
}
uint64_t z_nrf_rtc_timer_read(void)
{
uint64_t val = ((uint64_t)overflow_cnt) << COUNTER_BIT_WIDTH;
barrier_dmem_fence_full();
uint32_t cntr = counter();
val += cntr;
if (cntr < OVERFLOW_RISK_RANGE_END) {
/* `overflow_cnt` can have incorrect value due to still unhandled overflow or
* due to possibility that this code preempted overflow interrupt before final write
* of `overflow_cnt`. Update of `anchor` occurs far in time from this moment, so
* `anchor` is considered valid and stable. Because of this timing there is no risk
* of incorrect `anchor` value caused by non-atomic read of 64-bit `anchor`.
*/
if (val < anchor) {
/* Unhandled overflow, detected, let's add correction */
val += COUNTER_SPAN;
}
} else {
/* `overflow_cnt` is considered valid and stable in this range, no need to
* check validity using `anchor`
*/
}
return val;
}
static inline bool in_anchor_range(uint32_t cc_value)
{
return (cc_value >= ANCHOR_RANGE_START) && (cc_value < ANCHOR_RANGE_END);
}
static inline void anchor_update(uint32_t cc_value)
{
/* Update anchor when far from overflow */
if (in_anchor_range(cc_value)) {
/* In this range `overflow_cnt` is considered valid and stable.
* Write of 64-bit `anchor` is non atomic. However it happens
* far in time from the moment the `anchor` is read in
* `z_nrf_rtc_timer_read`.
*/
anchor = (((uint64_t)overflow_cnt) << COUNTER_BIT_WIDTH) + cc_value;
}
}
static void sys_clock_timeout_handler(int32_t chan,
uint64_t expire_time,
void *user_data)
{
uint32_t cc_value = absolute_time_to_cc(expire_time);
uint32_t dticks = (uint32_t)(expire_time - last_count) / CYC_PER_TICK;
last_count += dticks * CYC_PER_TICK;
anchor_update(cc_value);
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
/* protection is not needed because we are in the RTC interrupt
* so it won't get preempted by the interrupt.
*/
compare_set(chan, last_count + CYC_PER_TICK,
sys_clock_timeout_handler, NULL, false);
}
sys_clock_announce(dticks);
}
static bool channel_processing_check_and_clear(int32_t chan)
{
if (nrf_rtc_int_enable_check(RTC, NRF_RTC_CHANNEL_INT_MASK(chan))) {
/* The processing of channel can be caused by CC match
* or be forced.
*/
if ((atomic_and(&force_isr_mask, ~BIT(chan)) & BIT(chan)) ||
event_check(chan)) {
event_clear(chan);
return true;
}
}
return false;
}
static void process_channel(int32_t chan)
{
if (channel_processing_check_and_clear(chan)) {
void *user_context;
uint32_t mcu_critical_state;
uint64_t curr_time;
uint64_t expire_time;
z_nrf_rtc_timer_compare_handler_t handler = NULL;
curr_time = z_nrf_rtc_timer_read();
/* This critical section is used to provide atomic access to
* cc_data structure and prevent higher priority contexts
* (including ZLIs) from overwriting it.
*/
mcu_critical_state = full_int_lock();
/* If target_time is in the past or is equal to current time
* value, execute the handler.
*/
expire_time = cc_data[chan].target_time;
if (curr_time >= expire_time) {
handler = cc_data[chan].callback;
user_context = cc_data[chan].user_context;
cc_data[chan].callback = NULL;
cc_data[chan].target_time = TARGET_TIME_INVALID;
event_disable(chan);
/* Because of the way set_alarm() sets the CC register,
* it may turn out that another COMPARE event has been
* generated for the same alarm. Make sure the event
* is cleared, so that the ISR is not executed again
* unnecessarily.
*/
event_clear(chan);
}
full_int_unlock(mcu_critical_state);
if (handler) {
handler(chan, expire_time, user_context);
}
}
}
/* Note: this function has public linkage, and MUST have this
* particular name. The platform architecture itself doesn't care,
* but there is a test (tests/arch/arm_irq_vector_table) that needs
* to find it to it can set it in a custom vector table. Should
* probably better abstract that at some point (e.g. query and reset
* it by pointer at runtime, maybe?) so we don't have this leaky
* symbol.
*/
void rtc_nrf_isr(const void *arg)
{
ARG_UNUSED(arg);
if (RTC_PRETICK) {
rtc_pretick_rtc1_isr_hook();
}
if (nrf_rtc_int_enable_check(RTC, NRF_RTC_INT_OVERFLOW_MASK) &&
nrf_rtc_event_check(RTC, NRF_RTC_EVENT_OVERFLOW)) {
nrf_rtc_event_clear(RTC, NRF_RTC_EVENT_OVERFLOW);
overflow_cnt++;
}
for (int32_t chan = 0; chan < CHAN_COUNT; chan++) {
process_channel(chan);
}
}
int32_t z_nrf_rtc_timer_chan_alloc(void)
{
int32_t chan;
atomic_val_t prev;
do {
chan = alloc_mask ? 31 - __builtin_clz(alloc_mask) : -1;
if (chan < 0) {
return -ENOMEM;
}
prev = atomic_and(&alloc_mask, ~BIT(chan));
} while (!(prev & BIT(chan)));
return chan;
}
void z_nrf_rtc_timer_chan_free(int32_t chan)
{
__ASSERT_NO_MSG(chan > 0 && chan < CHAN_COUNT);
atomic_or(&alloc_mask, BIT(chan));
}
int z_nrf_rtc_timer_trigger_overflow(void)
{
uint32_t mcu_critical_state;
int err = 0;
if (!IS_ENABLED(CONFIG_NRF_RTC_TIMER_TRIGGER_OVERFLOW) ||
(CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT > 0)) {
return -ENOTSUP;
}
mcu_critical_state = full_int_lock();
if (sys_busy) {
err = -EBUSY;
goto bail;
}
if (counter() >= (COUNTER_SPAN - 100)) {
err = -EAGAIN;
goto bail;
}
nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_TRIGGER_OVERFLOW);
k_busy_wait(80);
uint64_t now = z_nrf_rtc_timer_read();
if (err == 0) {
sys_clock_timeout_handler(0, now, NULL);
}
bail:
full_int_unlock(mcu_critical_state);
return err;
}
void sys_clock_set_timeout(int32_t ticks, bool idle)
{
ARG_UNUSED(idle);
uint32_t cyc;
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return;
}
if (ticks == K_TICKS_FOREVER) {
cyc = MAX_TICKS * CYC_PER_TICK;
sys_busy = false;
} else {
/* Value of ticks can be zero or negative, what means "announce
* the next tick" (the same as ticks equal to 1).
*/
cyc = CLAMP(ticks, 1, (int32_t)MAX_TICKS);
cyc *= CYC_PER_TICK;
sys_busy = true;
}
uint32_t unannounced = z_nrf_rtc_timer_read() - last_count;
/* If we haven't announced for more than half the 24-bit wrap
* duration, then force an announce to avoid loss of a wrap
* event. This can happen if new timeouts keep being set
* before the existing one triggers the interrupt.
*/
if (unannounced >= COUNTER_HALF_SPAN) {
cyc = 0;
}
/* Get the cycles from last_count to the tick boundary after
* the requested ticks have passed starting now.
*/
cyc += unannounced;
cyc = DIV_ROUND_UP(cyc, CYC_PER_TICK) * CYC_PER_TICK;
/* Due to elapsed time the calculation above might produce a
* duration that laps the counter. Don't let it.
* This limitation also guarantees that the anchor will be properly
* updated before every overflow (see anchor_update()).
*/
if (cyc > MAX_CYCLES) {
cyc = MAX_CYCLES;
}
uint64_t target_time = cyc + last_count;
compare_set(0, target_time, sys_clock_timeout_handler, NULL, false);
}
uint32_t sys_clock_elapsed(void)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return 0;
}
return (z_nrf_rtc_timer_read() - last_count) / CYC_PER_TICK;
}
uint32_t sys_clock_cycle_get_32(void)
{
return (uint32_t)z_nrf_rtc_timer_read();
}
static void int_event_disable_rtc(void)
{
uint32_t mask = NRF_RTC_INT_TICK_MASK |
NRF_RTC_INT_OVERFLOW_MASK |
NRF_RTC_INT_COMPARE0_MASK |
NRF_RTC_INT_COMPARE1_MASK |
NRF_RTC_INT_COMPARE2_MASK |
NRF_RTC_INT_COMPARE3_MASK;
/* Reset interrupt enabling to expected reset values */
nrf_rtc_int_disable(RTC, mask);
/* Reset event routing enabling to expected reset values */
nrf_rtc_event_disable(RTC, mask);
}
void sys_clock_disable(void)
{
nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_STOP);
irq_disable(RTC_IRQn);
int_event_disable_rtc();
NVIC_ClearPendingIRQ(RTC_IRQn);
}
static int sys_clock_driver_init(void)
{
static const enum nrf_lfclk_start_mode mode =
IS_ENABLED(CONFIG_SYSTEM_CLOCK_NO_WAIT) ?
CLOCK_CONTROL_NRF_LF_START_NOWAIT :
(IS_ENABLED(CONFIG_SYSTEM_CLOCK_WAIT_FOR_AVAILABILITY) ?
CLOCK_CONTROL_NRF_LF_START_AVAILABLE :
CLOCK_CONTROL_NRF_LF_START_STABLE);
int_event_disable_rtc();
/* TODO: replace with counter driver to access RTC */
nrf_rtc_prescaler_set(RTC, 0);
for (int32_t chan = 0; chan < CHAN_COUNT; chan++) {
cc_data[chan].target_time = TARGET_TIME_INVALID;
nrf_rtc_int_enable(RTC, NRF_RTC_CHANNEL_INT_MASK(chan));
}
nrf_rtc_int_enable(RTC, NRF_RTC_INT_OVERFLOW_MASK);
NVIC_ClearPendingIRQ(RTC_IRQn);
IRQ_CONNECT(RTC_IRQn, DT_IRQ(DT_NODELABEL(RTC_LABEL), priority),
rtc_nrf_isr, 0, 0);
irq_enable(RTC_IRQn);
nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_CLEAR);
nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_START);
int_mask = BIT_MASK(CHAN_COUNT);
if (CONFIG_NRF_RTC_TIMER_USER_CHAN_COUNT) {
alloc_mask = BIT_MASK(EXT_CHAN_COUNT) << 1;
}
uint32_t initial_timeout = IS_ENABLED(CONFIG_TICKLESS_KERNEL) ?
MAX_CYCLES : CYC_PER_TICK;
compare_set(0, initial_timeout, sys_clock_timeout_handler, NULL, false);
z_nrf_clock_control_lf_on(mode);
return 0;
}
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);