zephyr/drivers/adc/adc_nrfx_saadc.c

701 lines
19 KiB
C

/*
* Copyright (c) 2018 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
#include <haly/nrfy_saadc.h>
#include <zephyr/dt-bindings/adc/nrf-saadc-v3.h>
#include <zephyr/dt-bindings/adc/nrf-saadc-nrf54l.h>
#include <zephyr/linker/devicetree_regions.h>
#define LOG_LEVEL CONFIG_ADC_LOG_LEVEL
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(adc_nrfx_saadc);
#define DT_DRV_COMPAT nordic_nrf_saadc
#if (NRF_SAADC_HAS_AIN_AS_PIN)
#if defined(CONFIG_NRF_PLATFORM_HALTIUM)
static const uint8_t saadc_psels[NRF_SAADC_AIN7 + 1] = {
[NRF_SAADC_AIN0] = NRF_PIN_PORT_TO_PIN_NUMBER(0U, 1),
[NRF_SAADC_AIN1] = NRF_PIN_PORT_TO_PIN_NUMBER(1U, 1),
[NRF_SAADC_AIN2] = NRF_PIN_PORT_TO_PIN_NUMBER(2U, 1),
[NRF_SAADC_AIN3] = NRF_PIN_PORT_TO_PIN_NUMBER(3U, 1),
[NRF_SAADC_AIN4] = NRF_PIN_PORT_TO_PIN_NUMBER(4U, 1),
[NRF_SAADC_AIN5] = NRF_PIN_PORT_TO_PIN_NUMBER(5U, 1),
[NRF_SAADC_AIN6] = NRF_PIN_PORT_TO_PIN_NUMBER(6U, 1),
[NRF_SAADC_AIN7] = NRF_PIN_PORT_TO_PIN_NUMBER(7U, 1),
};
#elif defined(CONFIG_SOC_NRF54L15)
static const uint32_t saadc_psels[NRF_SAADC_DVDD + 1] = {
[NRF_SAADC_AIN0] = NRF_PIN_PORT_TO_PIN_NUMBER(4U, 1),
[NRF_SAADC_AIN1] = NRF_PIN_PORT_TO_PIN_NUMBER(5U, 1),
[NRF_SAADC_AIN2] = NRF_PIN_PORT_TO_PIN_NUMBER(6U, 1),
[NRF_SAADC_AIN3] = NRF_PIN_PORT_TO_PIN_NUMBER(7U, 1),
[NRF_SAADC_AIN4] = NRF_PIN_PORT_TO_PIN_NUMBER(11U, 1),
[NRF_SAADC_AIN5] = NRF_PIN_PORT_TO_PIN_NUMBER(12U, 1),
[NRF_SAADC_AIN6] = NRF_PIN_PORT_TO_PIN_NUMBER(13U, 1),
[NRF_SAADC_AIN7] = NRF_PIN_PORT_TO_PIN_NUMBER(14U, 1),
[NRF_SAADC_VDD] = NRF_SAADC_INPUT_VDD,
[NRF_SAADC_AVDD] = NRF_SAADC_INPUT_AVDD,
[NRF_SAADC_DVDD] = NRF_SAADC_INPUT_DVDD,
};
#endif
#else
BUILD_ASSERT((NRF_SAADC_AIN0 == NRF_SAADC_INPUT_AIN0) &&
(NRF_SAADC_AIN1 == NRF_SAADC_INPUT_AIN1) &&
(NRF_SAADC_AIN2 == NRF_SAADC_INPUT_AIN2) &&
(NRF_SAADC_AIN3 == NRF_SAADC_INPUT_AIN3) &&
(NRF_SAADC_AIN4 == NRF_SAADC_INPUT_AIN4) &&
(NRF_SAADC_AIN5 == NRF_SAADC_INPUT_AIN5) &&
(NRF_SAADC_AIN6 == NRF_SAADC_INPUT_AIN6) &&
(NRF_SAADC_AIN7 == NRF_SAADC_INPUT_AIN7) &&
#if defined(SAADC_CH_PSELP_PSELP_VDDHDIV5)
(NRF_SAADC_VDDHDIV5 == NRF_SAADC_INPUT_VDDHDIV5) &&
#endif
#if defined(SAADC_CH_PSELP_PSELP_VDD)
(NRF_SAADC_VDD == NRF_SAADC_INPUT_VDD) &&
#endif
1,
"Definitions from nrf-adc.h do not match those from nrf_saadc.h");
#endif
#if defined(CONFIG_NRF_PLATFORM_HALTIUM)
/* Haltium devices always use bounce buffers in RAM */
#define SAADC_MEMORY_SECTION \
COND_CODE_1(DT_NODE_HAS_PROP(DT_NODELABEL(adc), memory_regions), \
(__attribute__((__section__(LINKER_DT_NODE_REGION_NAME( \
DT_PHANDLE(DT_NODELABEL(adc), memory_regions)))))), \
())
static uint16_t adc_samples_buffer[SAADC_CH_NUM] SAADC_MEMORY_SECTION;
#define ADC_BUFFER_IN_RAM
#endif /* defined(CONFIG_NRF_PLATFORM_HALTIUM) */
struct driver_data {
struct adc_context ctx;
uint8_t positive_inputs[SAADC_CH_NUM];
uint8_t single_ended_channels;
#if defined(ADC_BUFFER_IN_RAM)
void *samples_buffer;
void *user_buffer;
uint8_t active_channels;
#endif
};
static struct driver_data m_data = {
ADC_CONTEXT_INIT_TIMER(m_data, ctx),
ADC_CONTEXT_INIT_LOCK(m_data, ctx),
ADC_CONTEXT_INIT_SYNC(m_data, ctx),
#if defined(ADC_BUFFER_IN_RAM)
.samples_buffer = adc_samples_buffer,
#endif
};
/* Helper function to convert number of samples to the byte representation. */
static uint32_t samples_to_bytes(const struct adc_sequence *sequence, uint16_t number_of_samples)
{
if (NRF_SAADC_8BIT_SAMPLE_WIDTH == 8 && sequence->resolution == 8) {
return number_of_samples;
}
return number_of_samples * 2;
}
/* Helper function to convert acquisition time to register TACQ value. */
static int adc_convert_acq_time(uint16_t acquisition_time, nrf_saadc_acqtime_t *p_tacq_val)
{
int result = 0;
#if NRF_SAADC_HAS_ACQTIME_ENUM
switch (acquisition_time) {
case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 3):
*p_tacq_val = NRF_SAADC_ACQTIME_3US;
break;
case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 5):
*p_tacq_val = NRF_SAADC_ACQTIME_5US;
break;
case ADC_ACQ_TIME_DEFAULT:
case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 10):
*p_tacq_val = NRF_SAADC_ACQTIME_10US;
break;
case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 15):
*p_tacq_val = NRF_SAADC_ACQTIME_15US;
break;
case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 20):
*p_tacq_val = NRF_SAADC_ACQTIME_20US;
break;
case ADC_ACQ_TIME_MAX:
case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 40):
*p_tacq_val = NRF_SAADC_ACQTIME_40US;
break;
default:
result = -EINVAL;
}
#else
#define MINIMUM_ACQ_TIME_IN_NS 125
#define DEFAULT_ACQ_TIME_IN_NS 10000
nrf_saadc_acqtime_t tacq = 0;
uint16_t acq_time =
(acquisition_time == ADC_ACQ_TIME_DEFAULT
? DEFAULT_ACQ_TIME_IN_NS
: (ADC_ACQ_TIME_VALUE(acquisition_time) *
(ADC_ACQ_TIME_UNIT(acquisition_time) == ADC_ACQ_TIME_MICROSECONDS
? 1000
: 1)));
tacq = (nrf_saadc_acqtime_t)(acq_time / MINIMUM_ACQ_TIME_IN_NS) - 1;
if ((tacq > NRF_SAADC_ACQTIME_MAX) || (acq_time < MINIMUM_ACQ_TIME_IN_NS)) {
result = -EINVAL;
} else {
*p_tacq_val = tacq;
}
#endif
return result;
}
/* Implementation of the ADC driver API function: adc_channel_setup. */
static int adc_nrfx_channel_setup(const struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
nrf_saadc_channel_config_t config = {
#if NRF_SAADC_HAS_CH_CONFIG_RES
.resistor_p = NRF_SAADC_RESISTOR_DISABLED,
.resistor_n = NRF_SAADC_RESISTOR_DISABLED,
#endif
.burst = NRF_SAADC_BURST_DISABLED,
};
uint8_t channel_id = channel_cfg->channel_id;
uint32_t input_negative = channel_cfg->input_negative;
if (channel_id >= SAADC_CH_NUM) {
return -EINVAL;
}
switch (channel_cfg->gain) {
#if defined(SAADC_CH_CONFIG_GAIN_Gain1_6)
case ADC_GAIN_1_6:
config.gain = NRF_SAADC_GAIN1_6;
break;
#endif
#if defined(SAADC_CH_CONFIG_GAIN_Gain1_5)
case ADC_GAIN_1_5:
config.gain = NRF_SAADC_GAIN1_5;
break;
#endif
#if defined(SAADC_CH_CONFIG_GAIN_Gain1_4) || defined(SAADC_CH_CONFIG_GAIN_Gain2_8)
case ADC_GAIN_1_4:
config.gain = NRF_SAADC_GAIN1_4;
break;
#endif
#if defined(SAADC_CH_CONFIG_GAIN_Gain1_3) || defined(SAADC_CH_CONFIG_GAIN_Gain2_6)
case ADC_GAIN_1_3:
config.gain = NRF_SAADC_GAIN1_3;
break;
#endif
#if defined(SAADC_CH_CONFIG_GAIN_Gain2_5)
case ADC_GAIN_2_5:
config.gain = NRF_SAADC_GAIN2_5;
break;
#endif
#if defined(SAADC_CH_CONFIG_GAIN_Gain1_2) || defined(SAADC_CH_CONFIG_GAIN_Gain2_4)
case ADC_GAIN_1_2:
config.gain = NRF_SAADC_GAIN1_2;
break;
#endif
#if defined(SAADC_CH_CONFIG_GAIN_Gain2_3)
case ADC_GAIN_2_3:
config.gain = NRF_SAADC_GAIN2_3;
break;
#endif
case ADC_GAIN_1:
config.gain = NRF_SAADC_GAIN1;
break;
case ADC_GAIN_2:
config.gain = NRF_SAADC_GAIN2;
break;
#if defined(SAADC_CH_CONFIG_GAIN_Gain4)
case ADC_GAIN_4:
config.gain = NRF_SAADC_GAIN4;
break;
#endif
default:
LOG_ERR("Selected ADC gain is not valid");
return -EINVAL;
}
switch (channel_cfg->reference) {
#if defined(SAADC_CH_CONFIG_REFSEL_Internal)
case ADC_REF_INTERNAL:
config.reference = NRF_SAADC_REFERENCE_INTERNAL;
break;
#endif
#if defined(SAADC_CH_CONFIG_REFSEL_VDD1_4)
case ADC_REF_VDD_1_4:
config.reference = NRF_SAADC_REFERENCE_VDD4;
break;
#endif
#if defined(SAADC_CH_CONFIG_REFSEL_External)
case ADC_REF_EXTERNAL0:
config.reference = NRF_SAADC_REFERENCE_EXTERNAL;
break;
#endif
default:
LOG_ERR("Selected ADC reference is not valid");
return -EINVAL;
}
int ret = adc_convert_acq_time(channel_cfg->acquisition_time, &config.acq_time);
if (ret) {
LOG_ERR("Selected ADC acquisition time is not valid");
return -EINVAL;
}
/* Store channel mode to allow correcting negative readings in single-ended mode
* after ADC sequence ends.
*/
if (channel_cfg->differential) {
config.mode = NRF_SAADC_MODE_DIFFERENTIAL;
m_data.single_ended_channels &= ~BIT(channel_cfg->channel_id);
} else {
config.mode = NRF_SAADC_MODE_SINGLE_ENDED;
m_data.single_ended_channels |= BIT(channel_cfg->channel_id);
}
#if (NRF_SAADC_HAS_AIN_AS_PIN)
if ((channel_cfg->input_positive >= ARRAY_SIZE(saadc_psels)) ||
(channel_cfg->input_positive < NRF_SAADC_AIN0)) {
return -EINVAL;
}
if (config.mode == NRF_SAADC_MODE_DIFFERENTIAL) {
if (input_negative > NRF_SAADC_AIN7 ||
input_negative < NRF_SAADC_AIN0) {
return -EINVAL;
}
input_negative = saadc_psels[input_negative];
} else {
input_negative = NRF_SAADC_INPUT_DISABLED;
}
#endif
/* Store the positive input selection in a dedicated array,
* to get it later when the channel is selected for a sampling
* and to mark the channel as configured (ready to be selected).
*/
m_data.positive_inputs[channel_id] = channel_cfg->input_positive;
nrf_saadc_channel_init(NRF_SAADC, channel_id, &config);
/* Keep the channel disabled in hardware (set positive input to
* NRF_SAADC_INPUT_DISABLED) until it is selected to be included
* in a sampling sequence.
*/
nrf_saadc_channel_input_set(NRF_SAADC,
channel_id,
NRF_SAADC_INPUT_DISABLED,
input_negative);
return 0;
}
static void adc_context_start_sampling(struct adc_context *ctx)
{
nrf_saadc_enable(NRF_SAADC);
if (ctx->sequence.calibrate) {
nrf_saadc_task_trigger(NRF_SAADC,
NRF_SAADC_TASK_CALIBRATEOFFSET);
} else {
nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_START);
nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_SAMPLE);
}
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
bool repeat)
{
ARG_UNUSED(ctx);
if (!repeat) {
#if defined(ADC_BUFFER_IN_RAM)
m_data.user_buffer = (uint8_t *)m_data.user_buffer +
samples_to_bytes(&ctx->sequence, nrfy_saadc_amount_get(NRF_SAADC));
#else
nrf_saadc_value_t *buffer =
(uint8_t *)nrf_saadc_buffer_pointer_get(NRF_SAADC) +
samples_to_bytes(&ctx->sequence, nrfy_saadc_amount_get(NRF_SAADC));
nrfy_saadc_buffer_pointer_set(NRF_SAADC, buffer);
#endif
}
}
static int set_resolution(const struct adc_sequence *sequence)
{
nrf_saadc_resolution_t nrf_resolution;
switch (sequence->resolution) {
case 8:
nrf_resolution = NRF_SAADC_RESOLUTION_8BIT;
break;
case 10:
nrf_resolution = NRF_SAADC_RESOLUTION_10BIT;
break;
case 12:
nrf_resolution = NRF_SAADC_RESOLUTION_12BIT;
break;
case 14:
nrf_resolution = NRF_SAADC_RESOLUTION_14BIT;
break;
default:
LOG_ERR("ADC resolution value %d is not valid",
sequence->resolution);
return -EINVAL;
}
nrf_saadc_resolution_set(NRF_SAADC, nrf_resolution);
return 0;
}
static int set_oversampling(const struct adc_sequence *sequence,
uint8_t active_channels)
{
nrf_saadc_oversample_t nrf_oversampling;
if ((active_channels > 1) && (sequence->oversampling > 0)) {
LOG_ERR(
"Oversampling is supported for single channel only");
return -EINVAL;
}
switch (sequence->oversampling) {
case 0:
nrf_oversampling = NRF_SAADC_OVERSAMPLE_DISABLED;
break;
case 1:
nrf_oversampling = NRF_SAADC_OVERSAMPLE_2X;
break;
case 2:
nrf_oversampling = NRF_SAADC_OVERSAMPLE_4X;
break;
case 3:
nrf_oversampling = NRF_SAADC_OVERSAMPLE_8X;
break;
case 4:
nrf_oversampling = NRF_SAADC_OVERSAMPLE_16X;
break;
case 5:
nrf_oversampling = NRF_SAADC_OVERSAMPLE_32X;
break;
case 6:
nrf_oversampling = NRF_SAADC_OVERSAMPLE_64X;
break;
case 7:
nrf_oversampling = NRF_SAADC_OVERSAMPLE_128X;
break;
case 8:
nrf_oversampling = NRF_SAADC_OVERSAMPLE_256X;
break;
default:
LOG_ERR("Oversampling value %d is not valid",
sequence->oversampling);
return -EINVAL;
}
nrf_saadc_oversample_set(NRF_SAADC, nrf_oversampling);
return 0;
}
static int check_buffer_size(const struct adc_sequence *sequence,
uint8_t active_channels)
{
size_t needed_buffer_size;
needed_buffer_size = samples_to_bytes(sequence, active_channels);
if (sequence->options) {
needed_buffer_size *= (1 + sequence->options->extra_samplings);
}
if (sequence->buffer_size < needed_buffer_size) {
LOG_ERR("Provided buffer is too small (%u/%u)",
sequence->buffer_size, needed_buffer_size);
return -ENOMEM;
}
return 0;
}
static bool has_single_ended(const struct adc_sequence *sequence)
{
return sequence->channels & m_data.single_ended_channels;
}
static void correct_single_ended(const struct adc_sequence *sequence)
{
uint16_t channel_bit = BIT(0);
uint8_t selected_channels = sequence->channels;
uint8_t single_ended_channels = m_data.single_ended_channels;
int16_t *sample = nrf_saadc_buffer_pointer_get(NRF_SAADC);
while (channel_bit <= single_ended_channels) {
if (channel_bit & selected_channels) {
if ((channel_bit & single_ended_channels) && (*sample < 0)) {
*sample = 0;
}
sample++;
}
channel_bit <<= 1;
}
}
static int start_read(const struct device *dev,
const struct adc_sequence *sequence)
{
int error;
uint32_t selected_channels = sequence->channels;
uint8_t resolution = sequence->resolution;
uint8_t active_channels;
uint8_t channel_id;
/* Signal an error if channel selection is invalid (no channels or
* a non-existing one is selected).
*/
if (!selected_channels ||
(selected_channels & ~BIT_MASK(SAADC_CH_NUM))) {
LOG_ERR("Invalid selection of channels");
return -EINVAL;
}
active_channels = 0U;
/* Enable only the channels selected for the pointed sequence.
* Disable all the rest.
*/
channel_id = 0U;
do {
if (selected_channels & BIT(channel_id)) {
/* Signal an error if a selected channel has not been
* configured yet.
*/
if (m_data.positive_inputs[channel_id] == 0U) {
LOG_ERR("Channel %u not configured",
channel_id);
return -EINVAL;
}
/* Signal an error if the channel is configured as
* single ended with a resolution which is identical
* to the sample bit size. The SAADC's "single ended"
* mode is really differential mode with the
* negative input tied to ground. We can therefore
* observe negative values if the positive input falls
* below ground. If the sample bitsize is larger than
* the resolution, we can detect negative values and
* correct them to 0 after the sequencen has ended.
*/
if ((m_data.single_ended_channels & BIT(channel_id)) &&
(NRF_SAADC_8BIT_SAMPLE_WIDTH == 8 && resolution == 8)) {
LOG_ERR("Channel %u invalid single ended resolution",
channel_id);
return -EINVAL;
}
/* When oversampling is used, the burst mode needs to
* be activated. Unfortunately, this mode cannot be
* activated permanently in the channel setup, because
* then the multiple channel sampling fails (the END
* event is not generated) after switching to a single
* channel sampling and back. Thus, when oversampling
* is not used (hence, the multiple channel sampling is
* possible), the burst mode have to be deactivated.
*/
nrf_saadc_burst_set(NRF_SAADC, channel_id,
(sequence->oversampling != 0U ?
NRF_SAADC_BURST_ENABLED :
NRF_SAADC_BURST_DISABLED));
nrf_saadc_channel_pos_input_set(
NRF_SAADC,
channel_id,
#if NRF_SAADC_HAS_AIN_AS_PIN
saadc_psels[m_data.positive_inputs[channel_id]]
#else
m_data.positive_inputs[channel_id]
#endif
);
++active_channels;
} else {
nrf_saadc_burst_set(
NRF_SAADC,
channel_id,
NRF_SAADC_BURST_DISABLED);
nrf_saadc_channel_pos_input_set(
NRF_SAADC,
channel_id,
NRF_SAADC_INPUT_DISABLED);
}
} while (++channel_id < SAADC_CH_NUM);
error = set_resolution(sequence);
if (error) {
return error;
}
error = set_oversampling(sequence, active_channels);
if (error) {
return error;
}
error = check_buffer_size(sequence, active_channels);
if (error) {
return error;
}
#if defined(ADC_BUFFER_IN_RAM)
m_data.user_buffer = sequence->buffer;
m_data.active_channels = active_channels;
nrf_saadc_buffer_init(NRF_SAADC,
(nrf_saadc_value_t *)m_data.samples_buffer,
active_channels);
#else
nrf_saadc_buffer_init(NRF_SAADC,
(nrf_saadc_value_t *)sequence->buffer,
active_channels);
#endif
adc_context_start_read(&m_data.ctx, sequence);
return adc_context_wait_for_completion(&m_data.ctx);
}
/* Implementation of the ADC driver API function: adc_read. */
static int adc_nrfx_read(const struct device *dev,
const struct adc_sequence *sequence)
{
int error;
adc_context_lock(&m_data.ctx, false, NULL);
error = start_read(dev, sequence);
adc_context_release(&m_data.ctx, error);
return error;
}
#ifdef CONFIG_ADC_ASYNC
/* Implementation of the ADC driver API function: adc_read_async. */
static int adc_nrfx_read_async(const struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
int error;
adc_context_lock(&m_data.ctx, true, async);
error = start_read(dev, sequence);
adc_context_release(&m_data.ctx, error);
return error;
}
#endif /* CONFIG_ADC_ASYNC */
static void saadc_irq_handler(const struct device *dev)
{
if (nrf_saadc_event_check(NRF_SAADC, NRF_SAADC_EVENT_END)) {
nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_END);
nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_STOP);
nrf_saadc_disable(NRF_SAADC);
if (has_single_ended(&m_data.ctx.sequence)) {
correct_single_ended(&m_data.ctx.sequence);
}
#if defined(ADC_BUFFER_IN_RAM)
memcpy(m_data.user_buffer, m_data.samples_buffer,
samples_to_bytes(&m_data.ctx.sequence, m_data.active_channels));
#endif
adc_context_on_sampling_done(&m_data.ctx, dev);
} else if (nrf_saadc_event_check(NRF_SAADC,
NRF_SAADC_EVENT_CALIBRATEDONE)) {
nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_CALIBRATEDONE);
/*
* The workaround for Nordic nRF52832 anomalies 86 and
* 178 is an explicit STOP after CALIBRATEOFFSET
* before issuing START.
*/
nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_STOP);
nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_START);
nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_SAMPLE);
}
}
static int init_saadc(const struct device *dev)
{
nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_END);
nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_CALIBRATEDONE);
nrf_saadc_int_enable(NRF_SAADC,
NRF_SAADC_INT_END | NRF_SAADC_INT_CALIBRATEDONE);
NRFX_IRQ_ENABLE(DT_INST_IRQN(0));
IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority),
saadc_irq_handler, DEVICE_DT_INST_GET(0), 0);
adc_context_unlock_unconditionally(&m_data.ctx);
return 0;
}
static const struct adc_driver_api adc_nrfx_driver_api = {
.channel_setup = adc_nrfx_channel_setup,
.read = adc_nrfx_read,
#ifdef CONFIG_ADC_ASYNC
.read_async = adc_nrfx_read_async,
#endif
#if defined(CONFIG_SOC_NRF54L15)
.ref_internal = 900,
#elif defined(CONFIG_NRF_PLATFORM_HALTIUM)
.ref_internal = 1024,
#else
.ref_internal = 600,
#endif
};
/*
* There is only one instance on supported SoCs, so inst is guaranteed
* to be 0 if any instance is okay. (We use adc_0 above, so the driver
* is relying on the numeric instance value in a way that happens to
* be safe.)
*
* Just in case that assumption becomes invalid in the future, we use
* a BUILD_ASSERT().
*/
#define SAADC_INIT(inst) \
BUILD_ASSERT((inst) == 0, \
"multiple instances not supported"); \
DEVICE_DT_INST_DEFINE(0, \
init_saadc, \
NULL, \
NULL, \
NULL, \
POST_KERNEL, \
CONFIG_ADC_INIT_PRIORITY, \
&adc_nrfx_driver_api);
DT_INST_FOREACH_STATUS_OKAY(SAADC_INIT)