zephyr/drivers/bluetooth/hci/spi.c

549 lines
13 KiB
C

/* spi.c - SPI based Bluetooth driver */
/*
* Copyright (c) 2017 Linaro Ltd.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <gpio.h>
#include <init.h>
#include <spi.h>
#include <misc/byteorder.h>
#include <misc/util.h>
#include <bluetooth/hci.h>
#include <bluetooth/hci_driver.h>
#define BT_DBG_ENABLED IS_ENABLED(CONFIG_BT_DEBUG_HCI_DRIVER)
#include "common/log.h"
#define HCI_CMD 0x01
#define HCI_ACL 0x02
#define HCI_SCO 0x03
#define HCI_EVT 0x04
/* Special Values */
#define SPI_WRITE 0x0A
#define SPI_READ 0x0B
#define READY_NOW 0x02
#define EVT_BLUE_INITIALIZED 0x01
/* Offsets */
#define STATUS_HEADER_READY 0
#define STATUS_HEADER_TOREAD 3
#define PACKET_TYPE 0
#define EVT_HEADER_TYPE 0
#define EVT_HEADER_EVENT 1
#define EVT_HEADER_SIZE 2
#define EVT_VENDOR_CODE_LSB 3
#define EVT_VENDOR_CODE_MSB 4
#define CMD_OGF 1
#define CMD_OCF 2
#define GPIO_IRQ_PIN CONFIG_BT_SPI_IRQ_PIN
#define GPIO_RESET_PIN CONFIG_BT_SPI_RESET_PIN
#if defined(CONFIG_BT_SPI_BLUENRG)
#define GPIO_CS_PIN CONFIG_BT_SPI_CHIP_SELECT_PIN
#endif /* CONFIG_BT_SPI_BLUENRG */
/* Max SPI buffer length for transceive operations.
*
* Buffer size needs to be at least the size of the larger RX/TX buffer
* required by the SPI slave, as the legacy spi_transceive requires both RX/TX
* to be the same length. Size also needs to be compatible with the
* slave device used (e.g. nRF5X max buffer length for SPIS is 255).
*/
#define SPI_MAX_MSG_LEN 255 /* As defined by X-NUCLEO-IDB04A1 BSP */
static u8_t rxmsg[SPI_MAX_MSG_LEN];
static u8_t txmsg[SPI_MAX_MSG_LEN];
static struct device *irq_dev;
static struct device *rst_dev;
static struct gpio_callback gpio_cb;
static K_SEM_DEFINE(sem_initialised, 0, 1);
static K_SEM_DEFINE(sem_request, 0, 1);
static K_SEM_DEFINE(sem_busy, 1, 1);
static BT_STACK_NOINIT(rx_stack, 448);
static struct k_thread rx_thread_data;
#if defined(CONFIG_BT_DEBUG_HCI_DRIVER)
#include <misc/printk.h>
static inline void spi_dump_message(const u8_t *pre, u8_t *buf,
u8_t size)
{
u8_t i, c;
printk("%s (%d): ", pre, size);
for (i = 0; i < size; i++) {
c = buf[i];
printk("%x ", c);
if (c >= 31 && c <= 126) {
printk("[%c] ", c);
} else {
printk("[.] ");
}
}
printk("\n");
}
#else
static inline
void spi_dump_message(const u8_t *pre, u8_t *buf, u8_t size) {}
#endif
#if defined(CONFIG_BT_SPI_BLUENRG)
static struct device *cs_dev;
/* Define a limit when reading IRQ high */
/* It can be required to be increased for */
/* some particular cases. */
#define IRQ_HIGH_MAX_READ 3
static u8_t attempts;
#endif /* CONFIG_BT_SPI_BLUENRG */
#if defined(CONFIG_BT_BLUENRG_ACI)
#define BLUENRG_ACI_WRITE_CONFIG_DATA BT_OP(BT_OGF_VS, 0x000C)
#define BLUENRG_ACI_WRITE_CONFIG_CMD_LL 0x2C
#define BLUENRG_ACI_LL_MODE 0x01
struct bluenrg_aci_cmd_ll_param {
u8_t cmd;
u8_t length;
u8_t value;
};
static int bt_spi_send_aci_config_data_controller_mode(void);
#endif /* CONFIG_BT_BLUENRG_ACI */
static struct device *spi_dev;
static struct spi_config spi_conf = {
.frequency = CONFIG_BT_SPI_MAX_CLK_FREQ,
.operation = (SPI_OP_MODE_MASTER | SPI_TRANSFER_MSB | SPI_WORD_SET(8) |
SPI_LINES_SINGLE),
.slave = 0,
.cs = NULL,
};
static struct spi_buf spi_tx_buf;
static struct spi_buf spi_rx_buf;
static const struct spi_buf_set spi_tx = {
.buffers = &spi_tx_buf,
.count = 1
};
static const struct spi_buf_set spi_rx = {
.buffers = &spi_rx_buf,
.count = 1
};
static inline int bt_spi_transceive(void *tx, u32_t tx_len,
void *rx, u32_t rx_len)
{
spi_tx_buf.buf = tx;
spi_tx_buf.len = (size_t)tx_len;
spi_rx_buf.buf = rx;
spi_rx_buf.len = (size_t)rx_len;
return spi_transceive(spi_dev, &spi_conf, &spi_tx, &spi_rx);
}
static inline u16_t bt_spi_get_cmd(u8_t *txmsg)
{
return (txmsg[CMD_OCF] << 8) | txmsg[CMD_OGF];
}
static inline u16_t bt_spi_get_evt(u8_t *rxmsg)
{
return (rxmsg[EVT_VENDOR_CODE_MSB] << 8) | rxmsg[EVT_VENDOR_CODE_LSB];
}
static void bt_spi_isr(struct device *unused1, struct gpio_callback *unused2,
unsigned int unused3)
{
BT_DBG("");
k_sem_give(&sem_request);
}
static void bt_spi_handle_vendor_evt(u8_t *rxmsg)
{
switch (bt_spi_get_evt(rxmsg)) {
case EVT_BLUE_INITIALIZED:
k_sem_give(&sem_initialised);
#if defined(CONFIG_BT_BLUENRG_ACI)
/* force BlueNRG to be on controller mode */
bt_spi_send_aci_config_data_controller_mode();
#endif
default:
break;
}
}
#if defined(CONFIG_BT_SPI_BLUENRG)
/* BlueNRG has a particuliar way to wake up from sleep and be ready.
* All is done through its CS line:
* If it is in sleep mode, the first transaction will not return ready
* status. At this point, it's necessary to release the CS and retry
* within 2ms the same transaction. And again when it's required to
* know the amount of byte to read.
* (See section 5.2 of BlueNRG-MS datasheet)
*/
static int configure_cs(void)
{
cs_dev = device_get_binding(CONFIG_BT_SPI_CHIP_SELECT_DEV_NAME);
if (!cs_dev) {
BT_ERR("Failed to initialize GPIO driver: %s",
CONFIG_BT_SPI_CHIP_SELECT_DEV_NAME);
return -EIO;
}
gpio_pin_configure(cs_dev, GPIO_CS_PIN,
GPIO_DIR_OUT | GPIO_PUD_PULL_UP);
gpio_pin_write(cs_dev, GPIO_CS_PIN, 1);
return 0;
}
static void kick_cs(void)
{
gpio_pin_write(cs_dev, GPIO_CS_PIN, 1);
gpio_pin_write(cs_dev, GPIO_CS_PIN, 0);
}
static void release_cs(void)
{
gpio_pin_write(cs_dev, GPIO_CS_PIN, 1);
}
static bool irq_pin_high(void)
{
u32_t pin_state;
gpio_pin_read(irq_dev, GPIO_IRQ_PIN, &pin_state);
BT_DBG("IRQ Pin: %d", pin_state);
return pin_state;
}
static void init_irq_high_loop(void)
{
attempts = IRQ_HIGH_MAX_READ;
}
static bool exit_irq_high_loop(void)
{
/* Limit attempts on BlueNRG-MS as we might */
/* enter this loop with nothing to read */
attempts--;
return attempts;
}
#else
#define configure_cs(...) 0
#define kick_cs(...)
#define release_cs(...)
#define irq_pin_high(...) 0
#define init_irq_high_loop(...)
#define exit_irq_high_loop(...) 1
#endif
#if defined(CONFIG_BT_BLUENRG_ACI)
static int bt_spi_send_aci_config_data_controller_mode(void)
{
struct bluenrg_aci_cmd_ll_param *param;
struct net_buf *buf;
buf = bt_hci_cmd_create(BLUENRG_ACI_WRITE_CONFIG_DATA, sizeof(*param));
if (!buf) {
return -ENOBUFS;
}
param = net_buf_add(buf, sizeof(*param));
param->cmd = BLUENRG_ACI_WRITE_CONFIG_CMD_LL;
param->length = 0x1;
/* Force BlueNRG-MS roles to Link Layer only mode */
param->value = BLUENRG_ACI_LL_MODE;
bt_hci_cmd_send(BLUENRG_ACI_WRITE_CONFIG_DATA, buf);
return 0;
}
#endif /* CONFIG_BT_BLUENRG_ACI */
static void bt_spi_rx_thread(void)
{
struct net_buf *buf;
u8_t header_master[5] = { SPI_READ, 0x00, 0x00, 0x00, 0x00 };
u8_t header_slave[5];
struct bt_hci_acl_hdr acl_hdr;
u8_t size = 0;
int ret;
(void)memset(&txmsg, 0xFF, SPI_MAX_MSG_LEN);
while (true) {
k_sem_take(&sem_request, K_FOREVER);
/* Disable IRQ pin callback to avoid spurious IRQs */
gpio_pin_disable_callback(irq_dev, GPIO_IRQ_PIN);
k_sem_take(&sem_busy, K_FOREVER);
BT_DBG("");
do {
init_irq_high_loop();
do {
kick_cs();
ret = bt_spi_transceive(header_master, 5,
header_slave, 5);
} while ((((header_slave[STATUS_HEADER_TOREAD] == 0 ||
header_slave[STATUS_HEADER_TOREAD] == 0xFF) &&
!ret)) && exit_irq_high_loop());
if (!ret) {
size = header_slave[STATUS_HEADER_TOREAD];
do {
ret = bt_spi_transceive(&txmsg, size,
&rxmsg, size);
} while (rxmsg[0] == 0 && ret == 0);
}
release_cs();
gpio_pin_enable_callback(irq_dev, GPIO_IRQ_PIN);
k_sem_give(&sem_busy);
if (ret) {
BT_ERR("Error %d", ret);
continue;
}
spi_dump_message("RX:ed", rxmsg, size);
switch (rxmsg[PACKET_TYPE]) {
case HCI_EVT:
switch (rxmsg[EVT_HEADER_EVENT]) {
case BT_HCI_EVT_VENDOR:
/* Vendor events are currently unsupported */
bt_spi_handle_vendor_evt(rxmsg);
continue;
case BT_HCI_EVT_CMD_COMPLETE:
case BT_HCI_EVT_CMD_STATUS:
buf = bt_buf_get_cmd_complete(K_FOREVER);
break;
default:
buf = bt_buf_get_rx(BT_BUF_EVT, K_FOREVER);
break;
}
net_buf_add_mem(buf, &rxmsg[1],
rxmsg[EVT_HEADER_SIZE] + 2);
break;
case HCI_ACL:
buf = bt_buf_get_rx(BT_BUF_ACL_IN, K_FOREVER);
memcpy(&acl_hdr, &rxmsg[1], sizeof(acl_hdr));
net_buf_add_mem(buf, &acl_hdr, sizeof(acl_hdr));
net_buf_add_mem(buf, &rxmsg[5],
sys_le16_to_cpu(acl_hdr.len));
break;
default:
BT_ERR("Unknown BT buf type %d", rxmsg[0]);
continue;
}
if (rxmsg[PACKET_TYPE] == HCI_EVT &&
bt_hci_evt_is_prio(rxmsg[EVT_HEADER_EVENT])) {
bt_recv_prio(buf);
} else {
bt_recv(buf);
}
/* On BlueNRG-MS, host is expected to read */
/* as long as IRQ pin is high */
} while (irq_pin_high());
}
}
static int bt_spi_send(struct net_buf *buf)
{
u8_t header[5] = { SPI_WRITE, 0x00, 0x00, 0x00, 0x00 };
u32_t pending;
int ret;
BT_DBG("");
/* Buffer needs an additional byte for type */
if (buf->len >= SPI_MAX_MSG_LEN) {
BT_ERR("Message too long");
return -EINVAL;
}
/* Allow time for the read thread to handle interrupt */
while (true) {
gpio_pin_read(irq_dev, GPIO_IRQ_PIN, &pending);
if (!pending) {
break;
}
k_sleep(1);
}
k_sem_take(&sem_busy, K_FOREVER);
switch (bt_buf_get_type(buf)) {
case BT_BUF_ACL_OUT:
net_buf_push_u8(buf, HCI_ACL);
break;
case BT_BUF_CMD:
net_buf_push_u8(buf, HCI_CMD);
break;
default:
BT_ERR("Unsupported type");
k_sem_give(&sem_busy);
return -EINVAL;
}
/* Poll sanity values until device has woken-up */
do {
kick_cs();
ret = bt_spi_transceive(header, 5, rxmsg, 5);
/*
* RX Header (rxmsg) must contain a sanity check Byte and size
* information. If it does not contain BOTH then it is
* sleeping or still in the initialisation stage (waking-up).
*/
} while ((rxmsg[STATUS_HEADER_READY] != READY_NOW ||
(rxmsg[1] | rxmsg[2] | rxmsg[3] | rxmsg[4]) == 0) && !ret);
k_sem_give(&sem_busy);
if (!ret) {
/* Transmit the message */
do {
ret = bt_spi_transceive(buf->data, buf->len,
rxmsg, buf->len);
} while (rxmsg[0] == 0 && !ret);
}
release_cs();
if (ret) {
BT_ERR("Error %d", ret);
goto out;
}
spi_dump_message("TX:ed", buf->data, buf->len);
#if defined(CONFIG_BT_SPI_BLUENRG)
/*
* Since a RESET has been requested, the chip will now restart.
* Unfortunately the BlueNRG will reply with "reset received" but
* since it does not send back a NOP, we have no way to tell when the
* RESET has actually taken palce. Instead, we use the vendor command
* EVT_BLUE_INITIALIZED as an indication that it is safe to proceed.
*/
if (bt_spi_get_cmd(buf->data) == BT_HCI_OP_RESET) {
k_sem_take(&sem_initialised, K_FOREVER);
}
#endif /* CONFIG_BT_SPI_BLUENRG */
out:
net_buf_unref(buf);
return ret;
}
static int bt_spi_open(void)
{
/* Configure RST pin and hold BLE in Reset */
gpio_pin_configure(rst_dev, GPIO_RESET_PIN,
GPIO_DIR_OUT | GPIO_PUD_PULL_UP);
gpio_pin_write(rst_dev, GPIO_RESET_PIN, 0);
/* Configure IRQ pin and the IRQ call-back/handler */
gpio_pin_configure(irq_dev, GPIO_IRQ_PIN,
#if defined(CONFIG_BT_SPI_BLUENRG)
GPIO_PUD_PULL_DOWN |
#endif
GPIO_DIR_IN | GPIO_INT |
GPIO_INT_EDGE | GPIO_INT_ACTIVE_HIGH);
gpio_init_callback(&gpio_cb, bt_spi_isr, BIT(GPIO_IRQ_PIN));
if (gpio_add_callback(irq_dev, &gpio_cb)) {
return -EINVAL;
}
if (gpio_pin_enable_callback(irq_dev, GPIO_IRQ_PIN)) {
return -EINVAL;
}
/* Start RX thread */
k_thread_create(&rx_thread_data, rx_stack,
K_THREAD_STACK_SIZEOF(rx_stack),
(k_thread_entry_t)bt_spi_rx_thread, NULL, NULL, NULL,
K_PRIO_COOP(CONFIG_BT_RX_PRIO),
0, K_NO_WAIT);
/* Take BLE out of reset */
gpio_pin_write(rst_dev, GPIO_RESET_PIN, 1);
/* Device will let us know when it's ready */
k_sem_take(&sem_initialised, K_FOREVER);
return 0;
}
static const struct bt_hci_driver drv = {
.name = "BT SPI",
.bus = BT_HCI_DRIVER_BUS_SPI,
#if defined(CONFIG_BT_BLUENRG_ACI)
.quirks = BT_QUIRK_NO_RESET,
#endif /* CONFIG_BT_BLUENRG_ACI */
.open = bt_spi_open,
.send = bt_spi_send,
};
static int _bt_spi_init(struct device *unused)
{
ARG_UNUSED(unused);
spi_dev = device_get_binding(CONFIG_BT_SPI_DEV_NAME);
if (!spi_dev) {
BT_ERR("Failed to initialize SPI driver: %s",
CONFIG_BT_SPI_DEV_NAME);
return -EIO;
}
if (configure_cs()) {
return -EIO;
}
irq_dev = device_get_binding(CONFIG_BT_SPI_IRQ_DEV_NAME);
if (!irq_dev) {
BT_ERR("Failed to initialize GPIO driver: %s",
CONFIG_BT_SPI_IRQ_DEV_NAME);
return -EIO;
}
rst_dev = device_get_binding(CONFIG_BT_SPI_RESET_DEV_NAME);
if (!rst_dev) {
BT_ERR("Failed to initialize GPIO driver: %s",
CONFIG_BT_SPI_RESET_DEV_NAME);
return -EIO;
}
bt_hci_driver_register(&drv);
BT_DBG("BT SPI initialized");
return 0;
}
SYS_INIT(_bt_spi_init, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE);