zephyr/drivers/spi/spi_sam.c

936 lines
22 KiB
C

/*
* Copyright (c) 2017 Google LLC.
* Copyright (c) 2018 qianfan Zhao.
* Copyright (c) 2023 Gerson Fernando Budke.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT atmel_sam_spi
#define LOG_LEVEL CONFIG_SPI_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(spi_sam);
#include "spi_context.h"
#include <errno.h>
#include <zephyr/spinlock.h>
#include <zephyr/device.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/spi/rtio.h>
#include <zephyr/drivers/dma.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/clock_control/atmel_sam_pmc.h>
#include <zephyr/rtio/rtio.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/sys/util.h>
#include <soc.h>
#define SAM_SPI_CHIP_SELECT_COUNT 4
/* Number of bytes in transfer before using DMA if available */
#define SAM_SPI_DMA_THRESHOLD 32
/* Device constant configuration parameters */
struct spi_sam_config {
Spi *regs;
const struct atmel_sam_pmc_config clock_cfg;
const struct pinctrl_dev_config *pcfg;
bool loopback;
#ifdef CONFIG_SPI_SAM_DMA
const struct device *dma_dev;
const uint32_t dma_tx_channel;
const uint32_t dma_tx_perid;
const uint32_t dma_rx_channel;
const uint32_t dma_rx_perid;
#endif /* CONFIG_SPI_SAM_DMA */
};
/* Device run time data */
struct spi_sam_data {
struct spi_context ctx;
struct k_spinlock lock;
#ifdef CONFIG_SPI_RTIO
struct rtio *r; /* context for thread calls */
struct mpsc io_q;
struct rtio_iodev iodev;
struct rtio_iodev_sqe *txn_head;
struct rtio_iodev_sqe *txn_curr;
struct spi_dt_spec dt_spec;
#endif
#ifdef CONFIG_SPI_SAM_DMA
struct k_sem dma_sem;
#endif /* CONFIG_SPI_SAM_DMA */
};
static inline k_spinlock_key_t spi_spin_lock(const struct device *dev)
{
struct spi_sam_data *data = dev->data;
return k_spin_lock(&data->lock);
}
static inline void spi_spin_unlock(const struct device *dev, k_spinlock_key_t key)
{
struct spi_sam_data *data = dev->data;
k_spin_unlock(&data->lock, key);
}
static int spi_slave_to_mr_pcs(int slave)
{
int pcs[SAM_SPI_CHIP_SELECT_COUNT] = {0x0, 0x1, 0x3, 0x7};
/* SPI worked in fixed peripheral mode(SPI_MR.PS = 0) and disabled chip
* select decode(SPI_MR.PCSDEC = 0), based on Atmel | SMART ARM-based
* Flash MCU DATASHEET 40.8.2 SPI Mode Register:
* PCS = xxx0 NPCS[3:0] = 1110
* PCS = xx01 NPCS[3:0] = 1101
* PCS = x011 NPCS[3:0] = 1011
* PCS = 0111 NPCS[3:0] = 0111
*/
return pcs[slave];
}
static int spi_sam_configure(const struct device *dev,
const struct spi_config *config)
{
const struct spi_sam_config *cfg = dev->config;
struct spi_sam_data *data = dev->data;
Spi *regs = cfg->regs;
uint32_t spi_mr = 0U, spi_csr = 0U;
uint16_t spi_csr_idx = spi_cs_is_gpio(config) ? 0 : config->slave;
int div;
if (spi_context_configured(&data->ctx, config)) {
return 0;
}
if (config->operation & SPI_HALF_DUPLEX) {
LOG_ERR("Half-duplex not supported");
return -ENOTSUP;
}
if (SPI_OP_MODE_GET(config->operation) != SPI_OP_MODE_MASTER) {
/* Slave mode is not implemented. */
return -ENOTSUP;
}
if (config->slave > (SAM_SPI_CHIP_SELECT_COUNT - 1)) {
LOG_ERR("Slave %d is greater than %d",
config->slave, SAM_SPI_CHIP_SELECT_COUNT - 1);
return -EINVAL;
}
/* Set master mode, disable mode fault detection, set fixed peripheral
* select mode.
*/
spi_mr |= (SPI_MR_MSTR | SPI_MR_MODFDIS);
spi_mr |= SPI_MR_PCS(spi_slave_to_mr_pcs(spi_csr_idx));
if (cfg->loopback) {
spi_mr |= SPI_MR_LLB;
}
if ((config->operation & SPI_MODE_CPOL) != 0U) {
spi_csr |= SPI_CSR_CPOL;
}
if ((config->operation & SPI_MODE_CPHA) == 0U) {
spi_csr |= SPI_CSR_NCPHA;
}
if (SPI_WORD_SIZE_GET(config->operation) != 8) {
return -ENOTSUP;
} else {
spi_csr |= SPI_CSR_BITS(SPI_CSR_BITS_8_BIT);
}
/* Use the requested or next highest possible frequency */
div = SOC_ATMEL_SAM_MCK_FREQ_HZ / config->frequency;
div = CLAMP(div, 1, UINT8_MAX);
spi_csr |= SPI_CSR_SCBR(div);
regs->SPI_CR = SPI_CR_SPIDIS; /* Disable SPI */
regs->SPI_MR = spi_mr;
regs->SPI_CSR[spi_csr_idx] = spi_csr;
regs->SPI_CR = SPI_CR_SPIEN; /* Enable SPI */
data->ctx.config = config;
return 0;
}
/* Finish any ongoing writes and drop any remaining read data */
static void spi_sam_finish(Spi *regs)
{
while ((regs->SPI_SR & SPI_SR_TXEMPTY) == 0) {
}
while (regs->SPI_SR & SPI_SR_RDRF) {
(void)regs->SPI_RDR;
}
}
/* Fast path that transmits a buf */
static void spi_sam_fast_tx(Spi *regs, const uint8_t *tx_buf, const uint32_t tx_buf_len)
{
const uint8_t *p = tx_buf;
const uint8_t *pend = (uint8_t *)tx_buf + tx_buf_len;
uint8_t ch;
while (p != pend) {
ch = *p++;
while ((regs->SPI_SR & SPI_SR_TDRE) == 0) {
}
regs->SPI_TDR = SPI_TDR_TD(ch);
}
}
/* Fast path that reads into a buf */
static void spi_sam_fast_rx(Spi *regs, uint8_t *rx_buf, const uint32_t rx_buf_len)
{
uint8_t *rx = rx_buf;
int len = rx_buf_len;
if (len <= 0) {
return;
}
/* Write the first byte */
regs->SPI_TDR = SPI_TDR_TD(0);
len--;
while (len) {
while ((regs->SPI_SR & SPI_SR_TDRE) == 0) {
}
/* Read byte N+0 from the receive register */
while ((regs->SPI_SR & SPI_SR_RDRF) == 0) {
}
*rx = (uint8_t)regs->SPI_RDR;
rx++;
/* Load byte N+1 into the transmit register */
regs->SPI_TDR = SPI_TDR_TD(0);
len--;
}
/* Read the final incoming byte */
while ((regs->SPI_SR & SPI_SR_RDRF) == 0) {
}
*rx = (uint8_t)regs->SPI_RDR;
}
/* Fast path that writes and reads bufs of the same length */
static void spi_sam_fast_txrx(Spi *regs,
const uint8_t *tx_buf,
const uint8_t *rx_buf,
const uint32_t len)
{
const uint8_t *tx = tx_buf;
const uint8_t *txend = tx_buf + len;
uint8_t *rx = (uint8_t *)rx_buf;
if (len == 0) {
return;
}
/*
* The code below interleaves the transmit writes with the
* receive reads to keep the bus fully utilised. The code is
* equivalent to:
*
* Transmit byte 0
* Loop:
* - Transmit byte n+1
* - Receive byte n
* Receive the final byte
*/
/* Write the first byte */
regs->SPI_TDR = SPI_TDR_TD(*tx++);
while (tx != txend) {
while ((regs->SPI_SR & SPI_SR_TDRE) == 0) {
}
/* Load byte N+1 into the transmit register. TX is
* single buffered and we have at most one byte in
* flight so skip the DRE check.
*/
regs->SPI_TDR = SPI_TDR_TD(*tx++);
/* Read byte N+0 from the receive register */
while ((regs->SPI_SR & SPI_SR_RDRF) == 0) {
}
*rx++ = (uint8_t)regs->SPI_RDR;
}
/* Read the final incoming byte */
while ((regs->SPI_SR & SPI_SR_RDRF) == 0) {
}
*rx = (uint8_t)regs->SPI_RDR;
}
#ifdef CONFIG_SPI_SAM_DMA
static __aligned(4) uint32_t tx_dummy;
static __aligned(4) uint32_t rx_dummy;
#ifdef CONFIG_SPI_RTIO
static void spi_sam_iodev_complete(const struct device *dev, int status);
#endif
static void dma_callback(const struct device *dma_dev, void *user_data,
uint32_t channel, int status)
{
ARG_UNUSED(dma_dev);
ARG_UNUSED(channel);
ARG_UNUSED(status);
const struct device *dev = user_data;
struct spi_sam_data *drv_data = dev->data;
#ifdef CONFIG_SPI_RTIO
if (drv_data->txn_head != NULL) {
spi_sam_iodev_complete(dev, status);
return;
}
#endif
k_sem_give(&drv_data->dma_sem);
}
/* DMA transceive path */
static int spi_sam_dma_txrx(const struct device *dev,
Spi *regs,
const uint8_t *tx_buf,
const uint8_t *rx_buf,
const uint32_t len)
{
const struct spi_sam_config *drv_cfg = dev->config;
struct spi_sam_data *drv_data = dev->data;
#ifdef CONFIG_SPI_RTIO
bool blocking = drv_data->txn_head == NULL;
#else
bool blocking = true;
#endif
int res = 0;
__ASSERT_NO_MSG(rx_buf != NULL || tx_buf != NULL);
struct dma_config rx_dma_cfg = {
.source_data_size = 1,
.dest_data_size = 1,
.block_count = 1,
.dma_slot = drv_cfg->dma_rx_perid,
.channel_direction = PERIPHERAL_TO_MEMORY,
.source_burst_length = 1,
.dest_burst_length = 1,
.complete_callback_en = true,
.dma_callback = NULL,
.user_data = (void *)dev,
};
uint32_t dest_address, dest_addr_adjust;
if (rx_buf != NULL) {
dest_address = (uint32_t)rx_buf;
dest_addr_adjust = DMA_ADDR_ADJ_INCREMENT;
} else {
dest_address = (uint32_t)&rx_dummy;
dest_addr_adjust = DMA_ADDR_ADJ_NO_CHANGE;
}
struct dma_block_config rx_block_cfg = {
.dest_addr_adj = dest_addr_adjust,
.block_size = len,
.source_address = (uint32_t)&regs->SPI_RDR,
.dest_address = dest_address
};
rx_dma_cfg.head_block = &rx_block_cfg;
struct dma_config tx_dma_cfg = {
.source_data_size = 1,
.dest_data_size = 1,
.block_count = 1,
.dma_slot = drv_cfg->dma_tx_perid,
.channel_direction = MEMORY_TO_PERIPHERAL,
.source_burst_length = 1,
.dest_burst_length = 1,
.complete_callback_en = true,
.dma_callback = dma_callback,
.user_data = (void *)dev,
};
uint32_t source_address, source_addr_adjust;
if (tx_buf != NULL) {
source_address = (uint32_t)tx_buf;
source_addr_adjust = DMA_ADDR_ADJ_INCREMENT;
} else {
source_address = (uint32_t)&tx_dummy;
source_addr_adjust = DMA_ADDR_ADJ_NO_CHANGE;
}
struct dma_block_config tx_block_cfg = {
.source_addr_adj = source_addr_adjust,
.block_size = len,
.source_address = source_address,
.dest_address = (uint32_t)&regs->SPI_TDR
};
tx_dma_cfg.head_block = &tx_block_cfg;
res = dma_config(drv_cfg->dma_dev, drv_cfg->dma_rx_channel, &rx_dma_cfg);
if (res != 0) {
LOG_ERR("failed to configure SPI DMA RX");
goto out;
}
res = dma_config(drv_cfg->dma_dev, drv_cfg->dma_tx_channel, &tx_dma_cfg);
if (res != 0) {
LOG_ERR("failed to configure SPI DMA TX");
goto out;
}
/* Clocking begins on tx, so start rx first */
res = dma_start(drv_cfg->dma_dev, drv_cfg->dma_rx_channel);
if (res != 0) {
LOG_ERR("failed to start SPI DMA RX");
goto out;
}
res = dma_start(drv_cfg->dma_dev, drv_cfg->dma_tx_channel);
if (res != 0) {
LOG_ERR("failed to start SPI DMA TX");
dma_stop(drv_cfg->dma_dev, drv_cfg->dma_rx_channel);
}
/* Move up a level or wrap in branch when blocking */
if (blocking) {
k_sem_take(&drv_data->dma_sem, K_FOREVER);
spi_sam_finish(regs);
} else {
res = -EWOULDBLOCK;
}
out:
return res;
}
#endif /* CONFIG_SPI_SAM_DMA */
static inline int spi_sam_rx(const struct device *dev,
Spi *regs,
uint8_t *rx_buf,
uint32_t rx_buf_len)
{
k_spinlock_key_t key;
#ifdef CONFIG_SPI_SAM_DMA
const struct spi_sam_config *cfg = dev->config;
if (rx_buf_len < SAM_SPI_DMA_THRESHOLD || cfg->dma_dev == NULL) {
key = spi_spin_lock(dev);
spi_sam_fast_rx(regs, rx_buf, rx_buf_len);
} else {
return spi_sam_dma_txrx(dev, regs, NULL, rx_buf, rx_buf_len);
}
#else
key = spi_spin_lock(dev);
spi_sam_fast_rx(regs, rx_buf, rx_buf_len);
#endif
spi_sam_finish(regs);
spi_spin_unlock(dev, key);
return 0;
}
static inline int spi_sam_tx(const struct device *dev,
Spi *regs,
const uint8_t *tx_buf,
uint32_t tx_buf_len)
{
k_spinlock_key_t key;
#ifdef CONFIG_SPI_SAM_DMA
const struct spi_sam_config *cfg = dev->config;
if (tx_buf_len < SAM_SPI_DMA_THRESHOLD || cfg->dma_dev == NULL) {
key = spi_spin_lock(dev);
spi_sam_fast_tx(regs, tx_buf, tx_buf_len);
} else {
return spi_sam_dma_txrx(dev, regs, tx_buf, NULL, tx_buf_len);
}
#else
key = spi_spin_lock(dev);
spi_sam_fast_tx(regs, tx_buf, tx_buf_len);
#endif
spi_sam_finish(regs);
spi_spin_unlock(dev, key);
return 0;
}
static inline int spi_sam_txrx(const struct device *dev,
Spi *regs,
const uint8_t *tx_buf,
const uint8_t *rx_buf,
uint32_t buf_len)
{
k_spinlock_key_t key;
#ifdef CONFIG_SPI_SAM_DMA
const struct spi_sam_config *cfg = dev->config;
if (buf_len < SAM_SPI_DMA_THRESHOLD || cfg->dma_dev == NULL) {
key = spi_spin_lock(dev);
spi_sam_fast_txrx(regs, tx_buf, rx_buf, buf_len);
} else {
return spi_sam_dma_txrx(dev, regs, tx_buf, rx_buf, buf_len);
}
#else
key = spi_spin_lock(dev);
spi_sam_fast_txrx(regs, tx_buf, rx_buf, buf_len);
#endif
spi_sam_finish(regs);
spi_spin_unlock(dev, key);
return 0;
}
#ifndef CONFIG_SPI_RTIO
/* Fast path where every overlapping tx and rx buffer is the same length */
static void spi_sam_fast_transceive(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
const struct spi_sam_config *cfg = dev->config;
size_t tx_count = 0;
size_t rx_count = 0;
Spi *regs = cfg->regs;
const struct spi_buf *tx = NULL;
const struct spi_buf *rx = NULL;
if (tx_bufs) {
tx = tx_bufs->buffers;
tx_count = tx_bufs->count;
}
if (rx_bufs) {
rx = rx_bufs->buffers;
rx_count = rx_bufs->count;
}
while (tx_count != 0 && rx_count != 0) {
if (tx->buf == NULL) {
spi_sam_rx(dev, regs, rx->buf, rx->len);
} else if (rx->buf == NULL) {
spi_sam_tx(dev, regs, tx->buf, tx->len);
} else if (rx->len == tx->len) {
spi_sam_txrx(dev, regs, tx->buf, rx->buf, rx->len);
} else {
__ASSERT_NO_MSG("Invalid fast transceive configuration");
}
tx++;
tx_count--;
rx++;
rx_count--;
}
for (; tx_count != 0; tx_count--) {
spi_sam_tx(dev, regs, tx->buf, tx->len);
tx++;
}
for (; rx_count != 0; rx_count--) {
spi_sam_rx(dev, regs, rx->buf, rx->len);
rx++;
}
}
static bool spi_sam_transfer_ongoing(struct spi_sam_data *data)
{
return spi_context_tx_on(&data->ctx) || spi_context_rx_on(&data->ctx);
}
static void spi_sam_shift_master(Spi *regs, struct spi_sam_data *data)
{
uint8_t tx;
uint8_t rx;
if (spi_context_tx_buf_on(&data->ctx)) {
tx = *(uint8_t *)(data->ctx.tx_buf);
} else {
tx = 0U;
}
while ((regs->SPI_SR & SPI_SR_TDRE) == 0) {
}
regs->SPI_TDR = SPI_TDR_TD(tx);
spi_context_update_tx(&data->ctx, 1, 1);
while ((regs->SPI_SR & SPI_SR_RDRF) == 0) {
}
rx = (uint8_t)regs->SPI_RDR;
if (spi_context_rx_buf_on(&data->ctx)) {
*data->ctx.rx_buf = rx;
}
spi_context_update_rx(&data->ctx, 1, 1);
}
/* Returns true if the request is suitable for the fast
* path. Specifically, the bufs are a sequence of:
*
* - Zero or more RX and TX buf pairs where each is the same length.
* - Zero or more trailing RX only bufs
* - Zero or more trailing TX only bufs
*/
static bool spi_sam_is_regular(const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
const struct spi_buf *tx = NULL;
const struct spi_buf *rx = NULL;
size_t tx_count = 0;
size_t rx_count = 0;
if (tx_bufs) {
tx = tx_bufs->buffers;
tx_count = tx_bufs->count;
}
if (rx_bufs) {
rx = rx_bufs->buffers;
rx_count = rx_bufs->count;
}
if (!tx || !rx) {
return true;
}
while (tx_count != 0 && rx_count != 0) {
if (tx->len != rx->len) {
return false;
}
tx++;
tx_count--;
rx++;
rx_count--;
}
return true;
}
#else
static void spi_sam_iodev_complete(const struct device *dev, int status);
static void spi_sam_iodev_next(const struct device *dev, bool completion);
static void spi_sam_iodev_start(const struct device *dev)
{
const struct spi_sam_config *cfg = dev->config;
struct spi_sam_data *data = dev->data;
struct rtio_sqe *sqe = &data->txn_curr->sqe;
int ret = 0;
switch (sqe->op) {
case RTIO_OP_RX:
ret = spi_sam_rx(dev, cfg->regs, sqe->rx.buf, sqe->rx.buf_len);
break;
case RTIO_OP_TX:
ret = spi_sam_tx(dev, cfg->regs, sqe->tx.buf, sqe->tx.buf_len);
break;
case RTIO_OP_TINY_TX:
ret = spi_sam_tx(dev, cfg->regs, sqe->tiny_tx.buf, sqe->tiny_tx.buf_len);
break;
case RTIO_OP_TXRX:
ret = spi_sam_txrx(dev, cfg->regs, sqe->txrx.tx_buf, sqe->txrx.rx_buf,
sqe->txrx.buf_len);
break;
default:
LOG_ERR("Invalid op code %d for submission %p\n", sqe->op, (void *)sqe);
struct rtio_iodev_sqe *txn_head = data->txn_head;
spi_sam_iodev_next(dev, true);
rtio_iodev_sqe_err(txn_head, -EINVAL);
ret = 0;
}
if (ret == 0) {
spi_sam_iodev_complete(dev, 0);
}
}
static void spi_sam_iodev_next(const struct device *dev, bool completion)
{
struct spi_sam_data *data = dev->data;
k_spinlock_key_t key = spi_spin_lock(dev);
if (!completion && data->txn_curr != NULL) {
spi_spin_unlock(dev, key);
return;
}
struct mpsc_node *next = mpsc_pop(&data->io_q);
if (next != NULL) {
struct rtio_iodev_sqe *next_sqe = CONTAINER_OF(next, struct rtio_iodev_sqe, q);
data->txn_head = next_sqe;
data->txn_curr = next_sqe;
} else {
data->txn_head = NULL;
data->txn_curr = NULL;
}
spi_spin_unlock(dev, key);
if (data->txn_curr != NULL) {
struct spi_dt_spec *spi_dt_spec = data->txn_curr->sqe.iodev->data;
struct spi_config *spi_cfg = &spi_dt_spec->config;
spi_sam_configure(dev, spi_cfg);
spi_context_cs_control(&data->ctx, true);
spi_sam_iodev_start(dev);
}
}
static void spi_sam_iodev_complete(const struct device *dev, int status)
{
struct spi_sam_data *data = dev->data;
if (data->txn_curr->sqe.flags & RTIO_SQE_TRANSACTION) {
data->txn_curr = rtio_txn_next(data->txn_curr);
spi_sam_iodev_start(dev);
} else {
struct rtio_iodev_sqe *txn_head = data->txn_head;
spi_context_cs_control(&data->ctx, false);
spi_sam_iodev_next(dev, true);
rtio_iodev_sqe_ok(txn_head, status);
}
}
static void spi_sam_iodev_submit(const struct device *dev,
struct rtio_iodev_sqe *iodev_sqe)
{
struct spi_sam_data *data = dev->data;
mpsc_push(&data->io_q, &iodev_sqe->q);
spi_sam_iodev_next(dev, false);
}
#endif
static int spi_sam_transceive(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
struct spi_sam_data *data = dev->data;
int err = 0;
spi_context_lock(&data->ctx, false, NULL, NULL, config);
#if CONFIG_SPI_RTIO
struct rtio_sqe *sqe;
struct rtio_cqe *cqe;
struct spi_dt_spec *dt_spec = &data->dt_spec;
dt_spec->config = *config;
int ret = spi_rtio_copy(data->r, &data->iodev, tx_bufs, rx_bufs, &sqe);
if (ret < 0) {
err = ret;
goto done;
}
/* Submit request and wait */
rtio_submit(data->r, ret);
while (ret > 0) {
cqe = rtio_cqe_consume(data->r);
if (cqe->result < 0) {
err = cqe->result;
}
rtio_cqe_release(data->r, cqe);
ret--;
}
#else
const struct spi_sam_config *cfg = dev->config;
err = spi_sam_configure(dev, config);
if (err != 0) {
goto done;
}
spi_context_cs_control(&data->ctx, true);
if (spi_sam_is_regular(tx_bufs, rx_bufs)) {
spi_sam_fast_transceive(dev, config, tx_bufs, rx_bufs);
} else {
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
do {
spi_sam_shift_master(cfg->regs, data);
} while (spi_sam_transfer_ongoing(data));
}
spi_context_cs_control(&data->ctx, false);
#endif
done:
spi_context_release(&data->ctx, err);
return err;
}
static int spi_sam_transceive_sync(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
return spi_sam_transceive(dev, config, tx_bufs, rx_bufs);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_sam_transceive_async(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t cb,
void *userdata)
{
/* TODO: implement async transceive */
return -ENOTSUP;
}
#endif /* CONFIG_SPI_ASYNC */
static int spi_sam_release(const struct device *dev,
const struct spi_config *config)
{
struct spi_sam_data *data = dev->data;
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static int spi_sam_init(const struct device *dev)
{
int err;
const struct spi_sam_config *cfg = dev->config;
struct spi_sam_data *data = dev->data;
/* Enable SPI clock in PMC */
(void)clock_control_on(SAM_DT_PMC_CONTROLLER,
(clock_control_subsys_t)&cfg->clock_cfg);
err = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (err < 0) {
return err;
}
err = spi_context_cs_configure_all(&data->ctx);
if (err < 0) {
return err;
}
#ifdef CONFIG_SPI_SAM_DMA
k_sem_init(&data->dma_sem, 0, K_SEM_MAX_LIMIT);
#endif
#ifdef CONFIG_SPI_RTIO
data->dt_spec.bus = dev;
data->iodev.api = &spi_iodev_api;
data->iodev.data = &data->dt_spec;
mpsc_init(&data->io_q);
#endif
spi_context_unlock_unconditionally(&data->ctx);
/* The device will be configured and enabled when transceive
* is called.
*/
return 0;
}
static const struct spi_driver_api spi_sam_driver_api = {
.transceive = spi_sam_transceive_sync,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_sam_transceive_async,
#endif
#ifdef CONFIG_SPI_RTIO
.iodev_submit = spi_sam_iodev_submit,
#endif
.release = spi_sam_release,
};
#define SPI_DMA_INIT(n) \
.dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(n, tx)), \
.dma_tx_channel = DT_INST_DMAS_CELL_BY_NAME(n, tx, channel), \
.dma_tx_perid = DT_INST_DMAS_CELL_BY_NAME(n, tx, perid), \
.dma_rx_channel = DT_INST_DMAS_CELL_BY_NAME(n, rx, channel), \
.dma_rx_perid = DT_INST_DMAS_CELL_BY_NAME(n, rx, perid),
#ifdef CONFIG_SPI_SAM_DMA
#define SPI_SAM_USE_DMA(n) DT_INST_DMAS_HAS_NAME(n, tx)
#else
#define SPI_SAM_USE_DMA(n) 0
#endif
#define SPI_SAM_DEFINE_CONFIG(n) \
static const struct spi_sam_config spi_sam_config_##n = { \
.regs = (Spi *)DT_INST_REG_ADDR(n), \
.clock_cfg = SAM_DT_INST_CLOCK_PMC_CFG(n), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.loopback = DT_INST_PROP(n, loopback), \
COND_CODE_1(SPI_SAM_USE_DMA(n), (SPI_DMA_INIT(n)), ()) \
}
#define SPI_SAM_RTIO_DEFINE(n) RTIO_DEFINE(spi_sam_rtio_##n, CONFIG_SPI_SAM_RTIO_SQ_SIZE, \
CONFIG_SPI_SAM_RTIO_SQ_SIZE)
#define SPI_SAM_DEVICE_INIT(n) \
PINCTRL_DT_INST_DEFINE(n); \
SPI_SAM_DEFINE_CONFIG(n); \
COND_CODE_1(CONFIG_SPI_RTIO, (SPI_SAM_RTIO_DEFINE(n)), ()); \
static struct spi_sam_data spi_sam_dev_data_##n = { \
SPI_CONTEXT_INIT_LOCK(spi_sam_dev_data_##n, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_sam_dev_data_##n, ctx), \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx) \
IF_ENABLED(CONFIG_SPI_RTIO, (.r = &spi_sam_rtio_##n)) \
}; \
DEVICE_DT_INST_DEFINE(n, &spi_sam_init, NULL, \
&spi_sam_dev_data_##n, \
&spi_sam_config_##n, POST_KERNEL, \
CONFIG_SPI_INIT_PRIORITY, &spi_sam_driver_api);
DT_INST_FOREACH_STATUS_OKAY(SPI_SAM_DEVICE_INIT)