692 lines
18 KiB
C
692 lines
18 KiB
C
/*
|
|
* Copyright (c) 2021 BrainCo Inc.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#define DT_DRV_COMPAT gd_gd32_spi
|
|
|
|
#include <errno.h>
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/drivers/clock_control.h>
|
|
#include <zephyr/drivers/clock_control/gd32.h>
|
|
#include <zephyr/drivers/pinctrl.h>
|
|
#include <zephyr/drivers/reset.h>
|
|
#include <zephyr/drivers/spi.h>
|
|
#include <zephyr/drivers/spi/rtio.h>
|
|
#ifdef CONFIG_SPI_GD32_DMA
|
|
#include <zephyr/drivers/dma.h>
|
|
#include <zephyr/drivers/dma/dma_gd32.h>
|
|
#endif
|
|
|
|
#include <gd32_spi.h>
|
|
|
|
#include <zephyr/logging/log.h>
|
|
#include <zephyr/irq.h>
|
|
LOG_MODULE_REGISTER(spi_gd32);
|
|
|
|
#include "spi_context.h"
|
|
|
|
/* SPI error status mask. */
|
|
#define SPI_GD32_ERR_MASK (SPI_STAT_RXORERR | SPI_STAT_CONFERR | SPI_STAT_CRCERR)
|
|
|
|
#define GD32_SPI_PSC_MAX 0x7U
|
|
|
|
#ifdef CONFIG_SPI_GD32_DMA
|
|
|
|
enum spi_gd32_dma_direction {
|
|
RX = 0,
|
|
TX,
|
|
NUM_OF_DIRECTION
|
|
};
|
|
|
|
struct spi_gd32_dma_config {
|
|
const struct device *dev;
|
|
uint32_t channel;
|
|
uint32_t config;
|
|
uint32_t slot;
|
|
uint32_t fifo_threshold;
|
|
};
|
|
|
|
struct spi_gd32_dma_data {
|
|
struct dma_config config;
|
|
struct dma_block_config block;
|
|
uint32_t count;
|
|
};
|
|
|
|
#endif
|
|
|
|
struct spi_gd32_config {
|
|
uint32_t reg;
|
|
uint16_t clkid;
|
|
struct reset_dt_spec reset;
|
|
const struct pinctrl_dev_config *pcfg;
|
|
#ifdef CONFIG_SPI_GD32_DMA
|
|
const struct spi_gd32_dma_config dma[NUM_OF_DIRECTION];
|
|
#endif
|
|
#ifdef CONFIG_SPI_GD32_INTERRUPT
|
|
void (*irq_configure)();
|
|
#endif
|
|
};
|
|
|
|
struct spi_gd32_data {
|
|
struct spi_context ctx;
|
|
#ifdef CONFIG_SPI_GD32_DMA
|
|
struct spi_gd32_dma_data dma[NUM_OF_DIRECTION];
|
|
#endif
|
|
};
|
|
|
|
#ifdef CONFIG_SPI_GD32_DMA
|
|
|
|
static uint32_t dummy_tx;
|
|
static uint32_t dummy_rx;
|
|
|
|
static bool spi_gd32_dma_enabled(const struct device *dev)
|
|
{
|
|
const struct spi_gd32_config *cfg = dev->config;
|
|
|
|
if (cfg->dma[TX].dev && cfg->dma[RX].dev) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static size_t spi_gd32_dma_enabled_num(const struct device *dev)
|
|
{
|
|
return spi_gd32_dma_enabled(dev) ? 2 : 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
static int spi_gd32_get_err(const struct spi_gd32_config *cfg)
|
|
{
|
|
uint32_t stat = SPI_STAT(cfg->reg);
|
|
|
|
if (stat & SPI_GD32_ERR_MASK) {
|
|
LOG_ERR("spi%u error status detected, err = %u",
|
|
cfg->reg, stat & (uint32_t)SPI_GD32_ERR_MASK);
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool spi_gd32_transfer_ongoing(struct spi_gd32_data *data)
|
|
{
|
|
return spi_context_tx_on(&data->ctx) ||
|
|
spi_context_rx_on(&data->ctx);
|
|
}
|
|
|
|
static int spi_gd32_configure(const struct device *dev,
|
|
const struct spi_config *config)
|
|
{
|
|
struct spi_gd32_data *data = dev->data;
|
|
const struct spi_gd32_config *cfg = dev->config;
|
|
uint32_t bus_freq;
|
|
|
|
if (spi_context_configured(&data->ctx, config)) {
|
|
return 0;
|
|
}
|
|
|
|
if (SPI_OP_MODE_GET(config->operation) == SPI_OP_MODE_SLAVE) {
|
|
LOG_ERR("Slave mode not supported");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
SPI_CTL0(cfg->reg) &= ~SPI_CTL0_SPIEN;
|
|
|
|
SPI_CTL0(cfg->reg) |= SPI_MASTER;
|
|
SPI_CTL0(cfg->reg) &= ~SPI_TRANSMODE_BDTRANSMIT;
|
|
|
|
if (SPI_WORD_SIZE_GET(config->operation) == 8) {
|
|
SPI_CTL0(cfg->reg) |= SPI_FRAMESIZE_8BIT;
|
|
} else {
|
|
SPI_CTL0(cfg->reg) |= SPI_FRAMESIZE_16BIT;
|
|
}
|
|
|
|
/* Reset to hardware NSS mode. */
|
|
SPI_CTL0(cfg->reg) &= ~SPI_CTL0_SWNSSEN;
|
|
if (spi_cs_is_gpio(config)) {
|
|
SPI_CTL0(cfg->reg) |= SPI_CTL0_SWNSSEN;
|
|
} else {
|
|
/*
|
|
* For single master env,
|
|
* hardware NSS mode also need to set the NSSDRV bit.
|
|
*/
|
|
SPI_CTL1(cfg->reg) |= SPI_CTL1_NSSDRV;
|
|
}
|
|
|
|
SPI_CTL0(cfg->reg) &= ~SPI_CTL0_LF;
|
|
if (config->operation & SPI_TRANSFER_LSB) {
|
|
SPI_CTL0(cfg->reg) |= SPI_CTL0_LF;
|
|
}
|
|
|
|
SPI_CTL0(cfg->reg) &= ~SPI_CTL0_CKPL;
|
|
if (config->operation & SPI_MODE_CPOL) {
|
|
SPI_CTL0(cfg->reg) |= SPI_CTL0_CKPL;
|
|
}
|
|
|
|
SPI_CTL0(cfg->reg) &= ~SPI_CTL0_CKPH;
|
|
if (config->operation & SPI_MODE_CPHA) {
|
|
SPI_CTL0(cfg->reg) |= SPI_CTL0_CKPH;
|
|
}
|
|
|
|
(void)clock_control_get_rate(GD32_CLOCK_CONTROLLER,
|
|
(clock_control_subsys_t)&cfg->clkid,
|
|
&bus_freq);
|
|
|
|
for (uint8_t i = 0U; i <= GD32_SPI_PSC_MAX; i++) {
|
|
bus_freq = bus_freq >> 1U;
|
|
if (bus_freq <= config->frequency) {
|
|
SPI_CTL0(cfg->reg) &= ~SPI_CTL0_PSC;
|
|
SPI_CTL0(cfg->reg) |= CTL0_PSC(i);
|
|
break;
|
|
}
|
|
}
|
|
|
|
data->ctx.config = config;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int spi_gd32_frame_exchange(const struct device *dev)
|
|
{
|
|
struct spi_gd32_data *data = dev->data;
|
|
const struct spi_gd32_config *cfg = dev->config;
|
|
struct spi_context *ctx = &data->ctx;
|
|
uint16_t tx_frame = 0U, rx_frame = 0U;
|
|
|
|
while ((SPI_STAT(cfg->reg) & SPI_STAT_TBE) == 0) {
|
|
/* NOP */
|
|
}
|
|
|
|
if (SPI_WORD_SIZE_GET(ctx->config->operation) == 8) {
|
|
if (spi_context_tx_buf_on(ctx)) {
|
|
tx_frame = UNALIGNED_GET((uint8_t *)(data->ctx.tx_buf));
|
|
}
|
|
/* For 8 bits mode, spi will forced SPI_DATA[15:8] to 0. */
|
|
SPI_DATA(cfg->reg) = tx_frame;
|
|
|
|
spi_context_update_tx(ctx, 1, 1);
|
|
} else {
|
|
if (spi_context_tx_buf_on(ctx)) {
|
|
tx_frame = UNALIGNED_GET((uint8_t *)(data->ctx.tx_buf));
|
|
}
|
|
SPI_DATA(cfg->reg) = tx_frame;
|
|
|
|
spi_context_update_tx(ctx, 2, 1);
|
|
}
|
|
|
|
while ((SPI_STAT(cfg->reg) & SPI_STAT_RBNE) == 0) {
|
|
/* NOP */
|
|
}
|
|
|
|
if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
|
|
/* For 8 bits mode, spi will forced SPI_DATA[15:8] to 0. */
|
|
rx_frame = SPI_DATA(cfg->reg);
|
|
if (spi_context_rx_buf_on(ctx)) {
|
|
UNALIGNED_PUT(rx_frame, (uint8_t *)data->ctx.rx_buf);
|
|
}
|
|
|
|
spi_context_update_rx(ctx, 1, 1);
|
|
} else {
|
|
rx_frame = SPI_DATA(cfg->reg);
|
|
if (spi_context_rx_buf_on(ctx)) {
|
|
UNALIGNED_PUT(rx_frame, (uint16_t *)data->ctx.rx_buf);
|
|
}
|
|
|
|
spi_context_update_rx(ctx, 2, 1);
|
|
}
|
|
|
|
return spi_gd32_get_err(cfg);
|
|
}
|
|
|
|
#ifdef CONFIG_SPI_GD32_DMA
|
|
static void spi_gd32_dma_callback(const struct device *dma_dev, void *arg,
|
|
uint32_t channel, int status);
|
|
|
|
static uint32_t spi_gd32_dma_setup(const struct device *dev, const uint32_t dir)
|
|
{
|
|
const struct spi_gd32_config *cfg = dev->config;
|
|
struct spi_gd32_data *data = dev->data;
|
|
struct dma_config *dma_cfg = &data->dma[dir].config;
|
|
struct dma_block_config *block_cfg = &data->dma[dir].block;
|
|
const struct spi_gd32_dma_config *dma = &cfg->dma[dir];
|
|
int ret;
|
|
|
|
memset(dma_cfg, 0, sizeof(struct dma_config));
|
|
memset(block_cfg, 0, sizeof(struct dma_block_config));
|
|
|
|
dma_cfg->source_burst_length = 1;
|
|
dma_cfg->dest_burst_length = 1;
|
|
dma_cfg->user_data = (void *)dev;
|
|
dma_cfg->dma_callback = spi_gd32_dma_callback;
|
|
dma_cfg->block_count = 1U;
|
|
dma_cfg->head_block = block_cfg;
|
|
dma_cfg->dma_slot = cfg->dma[dir].slot;
|
|
dma_cfg->channel_priority =
|
|
GD32_DMA_CONFIG_PRIORITY(cfg->dma[dir].config);
|
|
dma_cfg->channel_direction =
|
|
dir == TX ? MEMORY_TO_PERIPHERAL : PERIPHERAL_TO_MEMORY;
|
|
|
|
if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
|
|
dma_cfg->source_data_size = 1;
|
|
dma_cfg->dest_data_size = 1;
|
|
} else {
|
|
dma_cfg->source_data_size = 2;
|
|
dma_cfg->dest_data_size = 2;
|
|
}
|
|
|
|
block_cfg->block_size = spi_context_max_continuous_chunk(&data->ctx);
|
|
|
|
if (dir == TX) {
|
|
block_cfg->dest_address = (uint32_t)&SPI_DATA(cfg->reg);
|
|
block_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
if (spi_context_tx_buf_on(&data->ctx)) {
|
|
block_cfg->source_address = (uint32_t)data->ctx.tx_buf;
|
|
block_cfg->source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
|
|
} else {
|
|
block_cfg->source_address = (uint32_t)&dummy_tx;
|
|
block_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
}
|
|
}
|
|
|
|
if (dir == RX) {
|
|
block_cfg->source_address = (uint32_t)&SPI_DATA(cfg->reg);
|
|
block_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
|
|
if (spi_context_rx_buf_on(&data->ctx)) {
|
|
block_cfg->dest_address = (uint32_t)data->ctx.rx_buf;
|
|
block_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
|
|
} else {
|
|
block_cfg->dest_address = (uint32_t)&dummy_rx;
|
|
block_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
}
|
|
}
|
|
|
|
ret = dma_config(dma->dev, dma->channel, dma_cfg);
|
|
if (ret < 0) {
|
|
LOG_ERR("dma_config %p failed %d\n", dma->dev, ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = dma_start(dma->dev, dma->channel);
|
|
if (ret < 0) {
|
|
LOG_ERR("dma_start %p failed %d\n", dma->dev, ret);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int spi_gd32_start_dma_transceive(const struct device *dev)
|
|
{
|
|
const struct spi_gd32_config *cfg = dev->config;
|
|
struct spi_gd32_data *data = dev->data;
|
|
const size_t chunk_len = spi_context_max_continuous_chunk(&data->ctx);
|
|
struct dma_status stat;
|
|
int ret = 0;
|
|
|
|
for (size_t i = 0; i < spi_gd32_dma_enabled_num(dev); i++) {
|
|
dma_get_status(cfg->dma[i].dev, cfg->dma[i].channel, &stat);
|
|
if ((chunk_len != data->dma[i].count) && !stat.busy) {
|
|
ret = spi_gd32_dma_setup(dev, i);
|
|
if (ret < 0) {
|
|
goto on_error;
|
|
}
|
|
}
|
|
}
|
|
|
|
SPI_CTL1(cfg->reg) |= (SPI_CTL1_DMATEN | SPI_CTL1_DMAREN);
|
|
|
|
on_error:
|
|
if (ret < 0) {
|
|
for (size_t i = 0; i < spi_gd32_dma_enabled_num(dev); i++) {
|
|
dma_stop(cfg->dma[i].dev, cfg->dma[i].channel);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static int spi_gd32_transceive_impl(const struct device *dev,
|
|
const struct spi_config *config,
|
|
const struct spi_buf_set *tx_bufs,
|
|
const struct spi_buf_set *rx_bufs,
|
|
spi_callback_t cb,
|
|
void *userdata)
|
|
{
|
|
struct spi_gd32_data *data = dev->data;
|
|
const struct spi_gd32_config *cfg = dev->config;
|
|
int ret;
|
|
|
|
spi_context_lock(&data->ctx, (cb != NULL), cb, userdata, config);
|
|
|
|
ret = spi_gd32_configure(dev, config);
|
|
if (ret < 0) {
|
|
goto error;
|
|
}
|
|
|
|
SPI_CTL0(cfg->reg) |= SPI_CTL0_SPIEN;
|
|
|
|
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
|
|
|
|
spi_context_cs_control(&data->ctx, true);
|
|
|
|
#ifdef CONFIG_SPI_GD32_INTERRUPT
|
|
#ifdef CONFIG_SPI_GD32_DMA
|
|
if (spi_gd32_dma_enabled(dev)) {
|
|
for (size_t i = 0; i < ARRAY_SIZE(data->dma); i++) {
|
|
data->dma[i].count = 0;
|
|
}
|
|
|
|
ret = spi_gd32_start_dma_transceive(dev);
|
|
if (ret < 0) {
|
|
goto dma_error;
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
SPI_STAT(cfg->reg) &=
|
|
~(SPI_STAT_RBNE | SPI_STAT_TBE | SPI_GD32_ERR_MASK);
|
|
SPI_CTL1(cfg->reg) |=
|
|
(SPI_CTL1_RBNEIE | SPI_CTL1_TBEIE | SPI_CTL1_ERRIE);
|
|
}
|
|
ret = spi_context_wait_for_completion(&data->ctx);
|
|
#else
|
|
do {
|
|
ret = spi_gd32_frame_exchange(dev);
|
|
if (ret < 0) {
|
|
break;
|
|
}
|
|
} while (spi_gd32_transfer_ongoing(data));
|
|
|
|
#ifdef CONFIG_SPI_ASYNC
|
|
spi_context_complete(&data->ctx, dev, ret);
|
|
#endif
|
|
#endif
|
|
|
|
while (!(SPI_STAT(cfg->reg) & SPI_STAT_TBE) ||
|
|
(SPI_STAT(cfg->reg) & SPI_STAT_TRANS)) {
|
|
/* Wait until last frame transfer complete. */
|
|
}
|
|
|
|
#ifdef CONFIG_SPI_GD32_DMA
|
|
dma_error:
|
|
SPI_CTL1(cfg->reg) &=
|
|
~(SPI_CTL1_DMATEN | SPI_CTL1_DMAREN);
|
|
#endif
|
|
spi_context_cs_control(&data->ctx, false);
|
|
|
|
SPI_CTL0(cfg->reg) &=
|
|
~(SPI_CTL0_SPIEN);
|
|
|
|
error:
|
|
spi_context_release(&data->ctx, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int spi_gd32_transceive(const struct device *dev,
|
|
const struct spi_config *config,
|
|
const struct spi_buf_set *tx_bufs,
|
|
const struct spi_buf_set *rx_bufs)
|
|
{
|
|
return spi_gd32_transceive_impl(dev, config, tx_bufs, rx_bufs, NULL, NULL);
|
|
}
|
|
|
|
#ifdef CONFIG_SPI_ASYNC
|
|
static int spi_gd32_transceive_async(const struct device *dev,
|
|
const struct spi_config *config,
|
|
const struct spi_buf_set *tx_bufs,
|
|
const struct spi_buf_set *rx_bufs,
|
|
spi_callback_t cb,
|
|
void *userdata)
|
|
{
|
|
return spi_gd32_transceive_impl(dev, config, tx_bufs, rx_bufs, cb, userdata);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPI_GD32_INTERRUPT
|
|
|
|
static void spi_gd32_complete(const struct device *dev, int status)
|
|
{
|
|
struct spi_gd32_data *data = dev->data;
|
|
const struct spi_gd32_config *cfg = dev->config;
|
|
|
|
SPI_CTL1(cfg->reg) &=
|
|
~(SPI_CTL1_RBNEIE | SPI_CTL1_TBEIE | SPI_CTL1_ERRIE);
|
|
|
|
#ifdef CONFIG_SPI_GD32_DMA
|
|
for (size_t i = 0; i < spi_gd32_dma_enabled_num(dev); i++) {
|
|
dma_stop(cfg->dma[i].dev, cfg->dma[i].channel);
|
|
}
|
|
#endif
|
|
|
|
spi_context_complete(&data->ctx, dev, status);
|
|
}
|
|
|
|
static void spi_gd32_isr(struct device *dev)
|
|
{
|
|
const struct spi_gd32_config *cfg = dev->config;
|
|
struct spi_gd32_data *data = dev->data;
|
|
int err = 0;
|
|
|
|
err = spi_gd32_get_err(cfg);
|
|
if (err) {
|
|
spi_gd32_complete(dev, err);
|
|
return;
|
|
}
|
|
|
|
if (spi_gd32_transfer_ongoing(data)) {
|
|
err = spi_gd32_frame_exchange(dev);
|
|
}
|
|
|
|
if (err || !spi_gd32_transfer_ongoing(data)) {
|
|
spi_gd32_complete(dev, err);
|
|
}
|
|
}
|
|
|
|
#endif /* SPI_GD32_INTERRUPT */
|
|
|
|
#ifdef CONFIG_SPI_GD32_DMA
|
|
|
|
static bool spi_gd32_chunk_transfer_finished(const struct device *dev)
|
|
{
|
|
struct spi_gd32_data *data = dev->data;
|
|
struct spi_gd32_dma_data *dma = data->dma;
|
|
const size_t chunk_len = spi_context_max_continuous_chunk(&data->ctx);
|
|
|
|
return (MIN(dma[TX].count, dma[RX].count) >= chunk_len);
|
|
}
|
|
|
|
static void spi_gd32_dma_callback(const struct device *dma_dev, void *arg,
|
|
uint32_t channel, int status)
|
|
{
|
|
const struct device *dev = (const struct device *)arg;
|
|
const struct spi_gd32_config *cfg = dev->config;
|
|
struct spi_gd32_data *data = dev->data;
|
|
const size_t chunk_len = spi_context_max_continuous_chunk(&data->ctx);
|
|
int err = 0;
|
|
|
|
if (status < 0) {
|
|
LOG_ERR("dma:%p ch:%d callback gets error: %d", dma_dev, channel,
|
|
status);
|
|
spi_gd32_complete(dev, status);
|
|
return;
|
|
}
|
|
|
|
for (size_t i = 0; i < ARRAY_SIZE(cfg->dma); i++) {
|
|
if (dma_dev == cfg->dma[i].dev &&
|
|
channel == cfg->dma[i].channel) {
|
|
data->dma[i].count += chunk_len;
|
|
}
|
|
}
|
|
|
|
/* Check transfer finished.
|
|
* The transmission of this chunk is complete if both the dma[TX].count
|
|
* and the dma[RX].count reach greater than or equal to the chunk_len.
|
|
* chunk_len is zero here means the transfer is already complete.
|
|
*/
|
|
if (spi_gd32_chunk_transfer_finished(dev)) {
|
|
if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
|
|
spi_context_update_tx(&data->ctx, 1, chunk_len);
|
|
spi_context_update_rx(&data->ctx, 1, chunk_len);
|
|
} else {
|
|
spi_context_update_tx(&data->ctx, 2, chunk_len);
|
|
spi_context_update_rx(&data->ctx, 2, chunk_len);
|
|
}
|
|
|
|
if (spi_gd32_transfer_ongoing(data)) {
|
|
/* Next chunk is available, reset the count and
|
|
* continue processing
|
|
*/
|
|
data->dma[TX].count = 0;
|
|
data->dma[RX].count = 0;
|
|
} else {
|
|
/* All data is processed, complete the process */
|
|
spi_context_complete(&data->ctx, dev, 0);
|
|
return;
|
|
}
|
|
}
|
|
|
|
err = spi_gd32_start_dma_transceive(dev);
|
|
if (err) {
|
|
spi_gd32_complete(dev, err);
|
|
}
|
|
}
|
|
|
|
#endif /* DMA */
|
|
|
|
static int spi_gd32_release(const struct device *dev,
|
|
const struct spi_config *config)
|
|
{
|
|
struct spi_gd32_data *data = dev->data;
|
|
|
|
spi_context_unlock_unconditionally(&data->ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct spi_driver_api spi_gd32_driver_api = {
|
|
.transceive = spi_gd32_transceive,
|
|
#ifdef CONFIG_SPI_ASYNC
|
|
.transceive_async = spi_gd32_transceive_async,
|
|
#endif
|
|
#ifdef CONFIG_SPI_RTIO
|
|
.iodev_submit = spi_rtio_iodev_default_submit,
|
|
#endif
|
|
.release = spi_gd32_release
|
|
};
|
|
|
|
int spi_gd32_init(const struct device *dev)
|
|
{
|
|
struct spi_gd32_data *data = dev->data;
|
|
const struct spi_gd32_config *cfg = dev->config;
|
|
int ret;
|
|
#ifdef CONFIG_SPI_GD32_DMA
|
|
uint32_t ch_filter;
|
|
#endif
|
|
|
|
(void)clock_control_on(GD32_CLOCK_CONTROLLER,
|
|
(clock_control_subsys_t)&cfg->clkid);
|
|
|
|
(void)reset_line_toggle_dt(&cfg->reset);
|
|
|
|
ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
|
|
if (ret) {
|
|
LOG_ERR("Failed to apply pinctrl state");
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_SPI_GD32_DMA
|
|
if ((cfg->dma[RX].dev && !cfg->dma[TX].dev) ||
|
|
(cfg->dma[TX].dev && !cfg->dma[RX].dev)) {
|
|
LOG_ERR("DMA must be enabled for both TX and RX channels");
|
|
return -ENODEV;
|
|
}
|
|
|
|
for (size_t i = 0; i < spi_gd32_dma_enabled_num(dev); i++) {
|
|
if (!device_is_ready(cfg->dma[i].dev)) {
|
|
LOG_ERR("DMA %s not ready", cfg->dma[i].dev->name);
|
|
return -ENODEV;
|
|
}
|
|
|
|
ch_filter = BIT(cfg->dma[i].channel);
|
|
ret = dma_request_channel(cfg->dma[i].dev, &ch_filter);
|
|
if (ret < 0) {
|
|
LOG_ERR("dma_request_channel failed %d", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
ret = spi_context_cs_configure_all(&data->ctx);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_SPI_GD32_INTERRUPT
|
|
cfg->irq_configure(dev);
|
|
#endif
|
|
|
|
spi_context_unlock_unconditionally(&data->ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define DMA_INITIALIZER(idx, dir) \
|
|
{ \
|
|
.dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(idx, dir)), \
|
|
.channel = DT_INST_DMAS_CELL_BY_NAME(idx, dir, channel), \
|
|
.slot = COND_CODE_1( \
|
|
DT_HAS_COMPAT_STATUS_OKAY(gd_gd32_dma_v1), \
|
|
(DT_INST_DMAS_CELL_BY_NAME(idx, dir, slot)), (0)), \
|
|
.config = DT_INST_DMAS_CELL_BY_NAME(idx, dir, config), \
|
|
.fifo_threshold = COND_CODE_1( \
|
|
DT_HAS_COMPAT_STATUS_OKAY(gd_gd32_dma_v1), \
|
|
(DT_INST_DMAS_CELL_BY_NAME(idx, dir, fifo_threshold)), \
|
|
(0)), \
|
|
}
|
|
|
|
#define DMAS_DECL(idx) \
|
|
{ \
|
|
COND_CODE_1(DT_INST_DMAS_HAS_NAME(idx, rx), \
|
|
(DMA_INITIALIZER(idx, rx)), ({0})), \
|
|
COND_CODE_1(DT_INST_DMAS_HAS_NAME(idx, tx), \
|
|
(DMA_INITIALIZER(idx, tx)), ({0})), \
|
|
}
|
|
|
|
#define GD32_IRQ_CONFIGURE(idx) \
|
|
static void spi_gd32_irq_configure_##idx(void) \
|
|
{ \
|
|
IRQ_CONNECT(DT_INST_IRQN(idx), DT_INST_IRQ(idx, priority), \
|
|
spi_gd32_isr, \
|
|
DEVICE_DT_INST_GET(idx), 0); \
|
|
irq_enable(DT_INST_IRQN(idx)); \
|
|
}
|
|
|
|
#define GD32_SPI_INIT(idx) \
|
|
PINCTRL_DT_INST_DEFINE(idx); \
|
|
IF_ENABLED(CONFIG_SPI_GD32_INTERRUPT, (GD32_IRQ_CONFIGURE(idx))); \
|
|
static struct spi_gd32_data spi_gd32_data_##idx = { \
|
|
SPI_CONTEXT_INIT_LOCK(spi_gd32_data_##idx, ctx), \
|
|
SPI_CONTEXT_INIT_SYNC(spi_gd32_data_##idx, ctx), \
|
|
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(idx), ctx) }; \
|
|
static struct spi_gd32_config spi_gd32_config_##idx = { \
|
|
.reg = DT_INST_REG_ADDR(idx), \
|
|
.clkid = DT_INST_CLOCKS_CELL(idx, id), \
|
|
.reset = RESET_DT_SPEC_INST_GET(idx), \
|
|
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(idx), \
|
|
IF_ENABLED(CONFIG_SPI_GD32_DMA, (.dma = DMAS_DECL(idx),)) \
|
|
IF_ENABLED(CONFIG_SPI_GD32_INTERRUPT, \
|
|
(.irq_configure = spi_gd32_irq_configure_##idx)) }; \
|
|
DEVICE_DT_INST_DEFINE(idx, spi_gd32_init, NULL, \
|
|
&spi_gd32_data_##idx, &spi_gd32_config_##idx, \
|
|
POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \
|
|
&spi_gd32_driver_api);
|
|
|
|
DT_INST_FOREACH_STATUS_OKAY(GD32_SPI_INIT)
|