zephyr/drivers/spi/spi_nrfx_spim.c

620 lines
18 KiB
C

/*
* Copyright (c) 2017 - 2018, Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/drivers/spi.h>
#include <zephyr/pm/device.h>
#include <zephyr/drivers/pinctrl.h>
#include <soc.h>
#ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
#include <nrfx_gpiote.h>
#include <nrfx_ppi.h>
#endif
#include <nrfx_spim.h>
#include <hal/nrf_clock.h>
#include <string.h>
#include <zephyr/linker/devicetree_regions.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(spi_nrfx_spim, CONFIG_SPI_LOG_LEVEL);
#include "spi_context.h"
#if (CONFIG_SPI_NRFX_RAM_BUFFER_SIZE > 0)
#define SPI_BUFFER_IN_RAM 1
#endif
struct spi_nrfx_data {
struct spi_context ctx;
const struct device *dev;
size_t chunk_len;
bool busy;
bool initialized;
#if SPI_BUFFER_IN_RAM
uint8_t *buffer;
#endif
#ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
bool anomaly_58_workaround_active;
uint8_t ppi_ch;
uint8_t gpiote_ch;
#endif
};
struct spi_nrfx_config {
nrfx_spim_t spim;
size_t max_chunk_len;
uint32_t max_freq;
nrfx_spim_config_t def_config;
#ifdef CONFIG_PINCTRL
const struct pinctrl_dev_config *pcfg;
#endif
#ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
bool anomaly_58_workaround;
#endif
};
static void event_handler(const nrfx_spim_evt_t *p_event, void *p_context);
static inline nrf_spim_frequency_t get_nrf_spim_frequency(uint32_t frequency)
{
/* Get the highest supported frequency not exceeding the requested one.
*/
if (frequency < 250000) {
return NRF_SPIM_FREQ_125K;
} else if (frequency < 500000) {
return NRF_SPIM_FREQ_250K;
} else if (frequency < 1000000) {
return NRF_SPIM_FREQ_500K;
} else if (frequency < 2000000) {
return NRF_SPIM_FREQ_1M;
} else if (frequency < 4000000) {
return NRF_SPIM_FREQ_2M;
} else if (frequency < 8000000) {
return NRF_SPIM_FREQ_4M;
/* Only the devices with HS-SPI can use SPI clock higher than 8 MHz and
* have SPIM_FREQUENCY_FREQUENCY_M32 defined in their own bitfields.h
*/
#if defined(SPIM_FREQUENCY_FREQUENCY_M32)
} else if (frequency < 16000000) {
return NRF_SPIM_FREQ_8M;
} else if (frequency < 32000000) {
return NRF_SPIM_FREQ_16M;
} else {
return NRF_SPIM_FREQ_32M;
#else
} else {
return NRF_SPIM_FREQ_8M;
#endif
}
}
static inline nrf_spim_mode_t get_nrf_spim_mode(uint16_t operation)
{
if (SPI_MODE_GET(operation) & SPI_MODE_CPOL) {
if (SPI_MODE_GET(operation) & SPI_MODE_CPHA) {
return NRF_SPIM_MODE_3;
} else {
return NRF_SPIM_MODE_2;
}
} else {
if (SPI_MODE_GET(operation) & SPI_MODE_CPHA) {
return NRF_SPIM_MODE_1;
} else {
return NRF_SPIM_MODE_0;
}
}
}
static inline nrf_spim_bit_order_t get_nrf_spim_bit_order(uint16_t operation)
{
if (operation & SPI_TRANSFER_LSB) {
return NRF_SPIM_BIT_ORDER_LSB_FIRST;
} else {
return NRF_SPIM_BIT_ORDER_MSB_FIRST;
}
}
static int configure(const struct device *dev,
const struct spi_config *spi_cfg)
{
struct spi_nrfx_data *dev_data = dev->data;
const struct spi_nrfx_config *dev_config = dev->config;
struct spi_context *ctx = &dev_data->ctx;
uint32_t max_freq = dev_config->max_freq;
nrfx_spim_config_t config;
nrfx_err_t result;
if (dev_data->initialized && spi_context_configured(ctx, spi_cfg)) {
/* Already configured. No need to do it again. */
return 0;
}
if (spi_cfg->operation & SPI_HALF_DUPLEX) {
LOG_ERR("Half-duplex not supported");
return -ENOTSUP;
}
if (SPI_OP_MODE_GET(spi_cfg->operation) != SPI_OP_MODE_MASTER) {
LOG_ERR("Slave mode is not supported on %s", dev->name);
return -EINVAL;
}
if (spi_cfg->operation & SPI_MODE_LOOP) {
LOG_ERR("Loopback mode is not supported");
return -EINVAL;
}
if (IS_ENABLED(CONFIG_SPI_EXTENDED_MODES) &&
(spi_cfg->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) {
LOG_ERR("Only single line mode is supported");
return -EINVAL;
}
if (SPI_WORD_SIZE_GET(spi_cfg->operation) != 8) {
LOG_ERR("Word sizes other than 8 bits are not supported");
return -EINVAL;
}
if (spi_cfg->frequency < 125000) {
LOG_ERR("Frequencies lower than 125 kHz are not supported");
return -EINVAL;
}
#if defined(CONFIG_SOC_NRF5340_CPUAPP)
/* On nRF5340, the 32 Mbps speed is supported by the application core
* when it is running at 128 MHz (see the Timing specifications section
* in the nRF5340 PS).
*/
if (max_freq > 16000000 &&
nrf_clock_hfclk_div_get(NRF_CLOCK) != NRF_CLOCK_HFCLK_DIV_1) {
max_freq = 16000000;
}
#endif
config = dev_config->def_config;
/* Limit the frequency to that supported by the SPIM instance. */
config.frequency = get_nrf_spim_frequency(MIN(spi_cfg->frequency,
max_freq));
config.mode = get_nrf_spim_mode(spi_cfg->operation);
config.bit_order = get_nrf_spim_bit_order(spi_cfg->operation);
if (dev_data->initialized) {
nrfx_spim_uninit(&dev_config->spim);
dev_data->initialized = false;
}
result = nrfx_spim_init(&dev_config->spim, &config,
event_handler, dev_data);
if (result != NRFX_SUCCESS) {
LOG_ERR("Failed to initialize nrfx driver: %08x", result);
return -EIO;
}
dev_data->initialized = true;
ctx->config = spi_cfg;
return 0;
}
#ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
/*
* Brief Workaround for transmitting 1 byte with SPIM.
*
* Derived from the setup_workaround_for_ftpan_58() function from
* the nRF52832 Rev 1 Errata v1.6 document anomaly 58 workaround.
*
* Warning Must not be used when transmitting multiple bytes.
*
* Warning After this workaround is used, the user must reset the PPI
* channel and the GPIOTE channel before attempting to transmit multiple
* bytes.
*/
static void anomaly_58_workaround_setup(const struct device *dev)
{
struct spi_nrfx_data *dev_data = dev->data;
const struct spi_nrfx_config *dev_config = dev->config;
NRF_SPIM_Type *spim = dev_config->spim.p_reg;
uint32_t ppi_ch = dev_data->ppi_ch;
uint32_t gpiote_ch = dev_data->gpiote_ch;
uint32_t eep = (uint32_t)&NRF_GPIOTE->EVENTS_IN[gpiote_ch];
uint32_t tep = (uint32_t)&spim->TASKS_STOP;
dev_data->anomaly_58_workaround_active = true;
/* Create an event when SCK toggles */
nrf_gpiote_event_configure(NRF_GPIOTE, gpiote_ch, spim->PSEL.SCK,
GPIOTE_CONFIG_POLARITY_Toggle);
nrf_gpiote_event_enable(NRF_GPIOTE, gpiote_ch);
/* Stop the spim instance when SCK toggles */
nrf_ppi_channel_endpoint_setup(NRF_PPI, ppi_ch, eep, tep);
nrf_ppi_channel_enable(NRF_PPI, ppi_ch);
/* The spim instance cannot be stopped mid-byte, so it will finish
* transmitting the first byte and then stop. Effectively ensuring
* that only 1 byte is transmitted.
*/
}
static void anomaly_58_workaround_clear(struct spi_nrfx_data *dev_data)
{
uint32_t ppi_ch = dev_data->ppi_ch;
uint32_t gpiote_ch = dev_data->gpiote_ch;
if (dev_data->anomaly_58_workaround_active) {
nrf_ppi_channel_disable(NRF_PPI, ppi_ch);
nrf_gpiote_task_disable(NRF_GPIOTE, gpiote_ch);
dev_data->anomaly_58_workaround_active = false;
}
}
static int anomaly_58_workaround_init(const struct device *dev)
{
struct spi_nrfx_data *dev_data = dev->data;
const struct spi_nrfx_config *dev_config = dev->config;
nrfx_err_t err_code;
dev_data->anomaly_58_workaround_active = false;
if (dev_config->anomaly_58_workaround) {
err_code = nrfx_ppi_channel_alloc(&dev_data->ppi_ch);
if (err_code != NRFX_SUCCESS) {
LOG_ERR("Failed to allocate PPI channel");
return -ENODEV;
}
err_code = nrfx_gpiote_channel_alloc(&dev_data->gpiote_ch);
if (err_code != NRFX_SUCCESS) {
LOG_ERR("Failed to allocate GPIOTE channel");
return -ENODEV;
}
LOG_DBG("PAN 58 workaround enabled for %s: ppi %u, gpiote %u",
dev->name, dev_data->ppi_ch, dev_data->gpiote_ch);
}
return 0;
}
#endif
static void transfer_next_chunk(const struct device *dev)
{
struct spi_nrfx_data *dev_data = dev->data;
const struct spi_nrfx_config *dev_config = dev->config;
struct spi_context *ctx = &dev_data->ctx;
int error = 0;
size_t chunk_len = spi_context_max_continuous_chunk(ctx);
if (chunk_len > 0) {
nrfx_spim_xfer_desc_t xfer;
nrfx_err_t result;
const uint8_t *tx_buf = ctx->tx_buf;
#if (CONFIG_SPI_NRFX_RAM_BUFFER_SIZE > 0)
if (spi_context_tx_buf_on(ctx) && !nrfx_is_in_ram(tx_buf)) {
if (chunk_len > CONFIG_SPI_NRFX_RAM_BUFFER_SIZE) {
chunk_len = CONFIG_SPI_NRFX_RAM_BUFFER_SIZE;
}
memcpy(dev_data->buffer, tx_buf, chunk_len);
tx_buf = dev_data->buffer;
}
#endif
if (chunk_len > dev_config->max_chunk_len) {
chunk_len = dev_config->max_chunk_len;
}
dev_data->chunk_len = chunk_len;
xfer.p_tx_buffer = tx_buf;
xfer.tx_length = spi_context_tx_buf_on(ctx) ? chunk_len : 0;
xfer.p_rx_buffer = ctx->rx_buf;
xfer.rx_length = spi_context_rx_buf_on(ctx) ? chunk_len : 0;
#ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
if (xfer.rx_length == 1 && xfer.tx_length <= 1) {
if (dev_config->anomaly_58_workaround) {
anomaly_58_workaround_setup(dev);
} else {
LOG_WRN("Transaction aborted since it would trigger "
"nRF52832 PAN 58");
error = -EIO;
}
}
#endif
if (error == 0) {
result = nrfx_spim_xfer(&dev_config->spim, &xfer, 0);
if (result == NRFX_SUCCESS) {
return;
}
error = -EIO;
#ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
anomaly_58_workaround_clear(dev_data);
#endif
}
}
spi_context_cs_control(ctx, false);
LOG_DBG("Transaction finished with status %d", error);
spi_context_complete(ctx, error);
dev_data->busy = false;
}
static void event_handler(const nrfx_spim_evt_t *p_event, void *p_context)
{
struct spi_nrfx_data *dev_data = p_context;
if (p_event->type == NRFX_SPIM_EVENT_DONE) {
#ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
anomaly_58_workaround_clear(dev_data);
#endif
spi_context_update_tx(&dev_data->ctx, 1, dev_data->chunk_len);
spi_context_update_rx(&dev_data->ctx, 1, dev_data->chunk_len);
transfer_next_chunk(dev_data->dev);
}
}
static int transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
struct k_poll_signal *signal)
{
struct spi_nrfx_data *dev_data = dev->data;
int error;
spi_context_lock(&dev_data->ctx, asynchronous, signal, spi_cfg);
error = configure(dev, spi_cfg);
if (error == 0) {
dev_data->busy = true;
spi_context_buffers_setup(&dev_data->ctx, tx_bufs, rx_bufs, 1);
spi_context_cs_control(&dev_data->ctx, true);
transfer_next_chunk(dev);
error = spi_context_wait_for_completion(&dev_data->ctx);
}
spi_context_release(&dev_data->ctx, error);
return error;
}
static int spi_nrfx_transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_nrfx_transceive_async(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
struct k_poll_signal *async)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, async);
}
#endif /* CONFIG_SPI_ASYNC */
static int spi_nrfx_release(const struct device *dev,
const struct spi_config *spi_cfg)
{
struct spi_nrfx_data *dev_data = dev->data;
if (!spi_context_configured(&dev_data->ctx, spi_cfg)) {
return -EINVAL;
}
if (dev_data->busy) {
return -EBUSY;
}
spi_context_unlock_unconditionally(&dev_data->ctx);
return 0;
}
static const struct spi_driver_api spi_nrfx_driver_api = {
.transceive = spi_nrfx_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_nrfx_transceive_async,
#endif
.release = spi_nrfx_release,
};
#ifdef CONFIG_PM_DEVICE
static int spim_nrfx_pm_action(const struct device *dev,
enum pm_device_action action)
{
int ret = 0;
struct spi_nrfx_data *dev_data = dev->data;
const struct spi_nrfx_config *dev_config = dev->config;
switch (action) {
case PM_DEVICE_ACTION_RESUME:
#ifdef CONFIG_PINCTRL
ret = pinctrl_apply_state(dev_config->pcfg,
PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
#endif
/* nrfx_spim_init() will be called at configuration before
* the next transfer.
*/
break;
case PM_DEVICE_ACTION_SUSPEND:
if (dev_data->initialized) {
nrfx_spim_uninit(&dev_config->spim);
dev_data->initialized = false;
}
#ifdef CONFIG_PINCTRL
ret = pinctrl_apply_state(dev_config->pcfg,
PINCTRL_STATE_SLEEP);
if (ret < 0) {
return ret;
}
#endif
break;
default:
ret = -ENOTSUP;
}
return ret;
}
#endif /* CONFIG_PM_DEVICE */
/*
* We use NODELABEL here because the nrfx API requires us to call
* functions which are named according to SoC peripheral instance
* being operated on. Since DT_INST() makes no guarantees about that,
* it won't work.
*/
#define SPIM(idx) DT_NODELABEL(spi##idx)
#define SPIM_PROP(idx, prop) DT_PROP(SPIM(idx), prop)
#define SPIM_HAS_PROP(idx, prop) DT_NODE_HAS_PROP(SPIM(idx), prop)
#define SPIM_NRFX_MISO_PULL_DOWN(idx) DT_PROP(SPIM(idx), miso_pull_down)
#define SPIM_NRFX_MISO_PULL_UP(idx) DT_PROP(SPIM(idx), miso_pull_up)
#define SPIM_NRFX_MISO_PULL(idx) \
(SPIM_PROP(idx, miso_pull_up) \
? SPIM_PROP(idx, miso_pull_down) \
? -1 /* invalid configuration */\
: NRF_GPIO_PIN_PULLUP \
: SPIM_PROP(idx, miso_pull_down) \
? NRF_GPIO_PIN_PULLDOWN \
: NRF_GPIO_PIN_NOPULL)
#define SPI_NRFX_SPIM_EXTENDED_CONFIG(idx) \
IF_ENABLED(NRFX_SPIM_EXTENDED_ENABLED, \
(.dcx_pin = NRFX_SPIM_PIN_NOT_USED, \
IF_ENABLED(SPIM##idx##_FEATURE_RXDELAY_PRESENT, \
(.rx_delay = CONFIG_SPI_##idx##_NRF_RX_DELAY,)) \
))
#define SPI_NRFX_SPIM_PIN_CFG(idx) \
COND_CODE_1(CONFIG_PINCTRL, \
(.skip_gpio_cfg = true, \
.skip_psel_cfg = true,), \
(.sck_pin = SPIM_PROP(idx, sck_pin), \
.mosi_pin = DT_PROP_OR(SPIM(idx), mosi_pin, \
NRFX_SPIM_PIN_NOT_USED), \
.miso_pin = DT_PROP_OR(SPIM(idx), miso_pin, \
NRFX_SPIM_PIN_NOT_USED), \
.miso_pull = SPIM_NRFX_MISO_PULL(idx),))
#define SPI_NRFX_SPIM_DEVICE(idx) \
NRF_DT_CHECK_PIN_ASSIGNMENTS(SPIM(idx), 1, \
sck_pin, mosi_pin, miso_pin); \
BUILD_ASSERT(IS_ENABLED(CONFIG_PINCTRL) || \
!(SPIM_PROP(idx, miso_pull_up) && \
SPIM_PROP(idx, miso_pull_down)), \
"SPIM"#idx \
": cannot enable both pull-up and pull-down on MISO line"); \
static int spi_##idx##_init(const struct device *dev) \
{ \
struct spi_nrfx_data *dev_data = dev->data; \
int err; \
IRQ_CONNECT(NRFX_IRQ_NUMBER_GET(NRF_SPIM##idx), \
DT_IRQ(SPIM(idx), priority), \
nrfx_isr, nrfx_spim_##idx##_irq_handler, 0); \
IF_ENABLED(CONFIG_PINCTRL, ( \
const struct spi_nrfx_config *dev_config = dev->config;\
err = pinctrl_apply_state(dev_config->pcfg, \
PINCTRL_STATE_DEFAULT); \
if (err < 0) { \
return err; \
} \
)) \
err = spi_context_cs_configure_all(&dev_data->ctx); \
if (err < 0) { \
return err; \
} \
spi_context_unlock_unconditionally(&dev_data->ctx); \
COND_CODE_1(CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58, \
(return anomaly_58_workaround_init(dev);), \
(return 0;)) \
} \
IF_ENABLED(SPI_BUFFER_IN_RAM, \
(static uint8_t spim_##idx##_buffer \
[CONFIG_SPI_NRFX_RAM_BUFFER_SIZE] \
SPIM_MEMORY_SECTION(idx);)) \
static struct spi_nrfx_data spi_##idx##_data = { \
SPI_CONTEXT_INIT_LOCK(spi_##idx##_data, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_##idx##_data, ctx), \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(SPIM(idx), ctx) \
IF_ENABLED(SPI_BUFFER_IN_RAM, \
(.buffer = spim_##idx##_buffer,)) \
.dev = DEVICE_DT_GET(SPIM(idx)), \
.busy = false, \
}; \
IF_ENABLED(CONFIG_PINCTRL, (PINCTRL_DT_DEFINE(SPIM(idx)))); \
static const struct spi_nrfx_config spi_##idx##z_config = { \
.spim = NRFX_SPIM_INSTANCE(idx), \
.max_chunk_len = (1 << SPIM##idx##_EASYDMA_MAXCNT_SIZE) - 1, \
.max_freq = SPIM##idx##_MAX_DATARATE * 1000000, \
.def_config = { \
SPI_NRFX_SPIM_PIN_CFG(idx) \
.ss_pin = NRFX_SPIM_PIN_NOT_USED, \
.orc = CONFIG_SPI_##idx##_NRF_ORC, \
SPI_NRFX_SPIM_EXTENDED_CONFIG(idx) \
}, \
COND_CODE_1(CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58, \
(.anomaly_58_workaround = \
SPIM_PROP(idx, anomaly_58_workaround),), \
()) \
IF_ENABLED(CONFIG_PINCTRL, \
(.pcfg = PINCTRL_DT_DEV_CONFIG_GET(SPIM(idx)),)) \
}; \
PM_DEVICE_DT_DEFINE(SPIM(idx), spim_nrfx_pm_action); \
DEVICE_DT_DEFINE(SPIM(idx), \
spi_##idx##_init, \
PM_DEVICE_DT_GET(SPIM(idx)), \
&spi_##idx##_data, \
&spi_##idx##z_config, \
POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \
&spi_nrfx_driver_api)
#define SPIM_MEMORY_SECTION(idx) \
COND_CODE_1(SPIM_HAS_PROP(idx, memory_regions), \
(__attribute__((__section__(LINKER_DT_NODE_REGION_NAME( \
DT_PHANDLE(SPIM(idx), memory_regions)))))), \
())
#ifdef CONFIG_SPI_0_NRF_SPIM
SPI_NRFX_SPIM_DEVICE(0);
#endif
#ifdef CONFIG_SPI_1_NRF_SPIM
SPI_NRFX_SPIM_DEVICE(1);
#endif
#ifdef CONFIG_SPI_2_NRF_SPIM
SPI_NRFX_SPIM_DEVICE(2);
#endif
#ifdef CONFIG_SPI_3_NRF_SPIM
SPI_NRFX_SPIM_DEVICE(3);
#endif
#ifdef CONFIG_SPI_4_NRF_SPIM
SPI_NRFX_SPIM_DEVICE(4);
#endif