zephyr/drivers/pwm/pwm_nrfx.c

416 lines
12 KiB
C

/*
* Copyright (c) 2018, Cue Health Inc
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <nrfx_pwm.h>
#include <zephyr/drivers/pwm.h>
#include <zephyr/pm/device.h>
#include <zephyr/drivers/pinctrl.h>
#include <soc.h>
#include <hal/nrf_gpio.h>
#include <stdbool.h>
#define LOG_LEVEL CONFIG_PWM_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(pwm_nrfx);
#define PWM_NRFX_CH_POLARITY_MASK BIT(15)
#define PWM_NRFX_CH_PULSE_CYCLES_MASK BIT_MASK(15)
#define PWM_NRFX_CH_VALUE(value, inverted) \
(value | (inverted ? 0 : PWM_NRFX_CH_POLARITY_MASK))
struct pwm_nrfx_config {
nrfx_pwm_t pwm;
nrfx_pwm_config_t initial_config;
nrf_pwm_sequence_t seq;
#ifdef CONFIG_PINCTRL
const struct pinctrl_dev_config *pcfg;
#endif
};
struct pwm_nrfx_data {
uint32_t period_cycles;
uint16_t current[NRF_PWM_CHANNEL_COUNT];
uint16_t countertop;
uint8_t prescaler;
uint8_t initially_inverted;
};
static int pwm_period_check_and_set(const struct pwm_nrfx_config *config,
struct pwm_nrfx_data *data,
uint32_t channel,
uint32_t period_cycles)
{
uint8_t i;
uint8_t prescaler;
uint32_t countertop;
/* If any other channel (other than the one being configured) is set up
* with a non-zero pulse cycle, the period that is currently set cannot
* be changed, as this would influence the output for this channel.
*/
for (i = 0; i < NRF_PWM_CHANNEL_COUNT; ++i) {
if (i != channel) {
uint16_t channel_pulse_cycle =
data->current[i]
& PWM_NRFX_CH_PULSE_CYCLES_MASK;
if (channel_pulse_cycle > 0) {
LOG_ERR("Incompatible period.");
return -EINVAL;
}
}
}
/* Try to find a prescaler that will allow setting the requested period
* after prescaling as the countertop value for the PWM peripheral.
*/
prescaler = 0;
countertop = period_cycles;
do {
if (countertop <= PWM_COUNTERTOP_COUNTERTOP_Msk) {
data->period_cycles = period_cycles;
data->prescaler = prescaler;
data->countertop = (uint16_t)countertop;
nrf_pwm_configure(config->pwm.p_registers,
data->prescaler,
config->initial_config.count_mode,
data->countertop);
return 0;
}
countertop >>= 1;
++prescaler;
} while (prescaler <= PWM_PRESCALER_PRESCALER_Msk);
LOG_ERR("Prescaler for period_cycles %u not found.", period_cycles);
return -EINVAL;
}
static bool pwm_channel_is_active(uint8_t channel,
const struct pwm_nrfx_data *data)
{
uint16_t pulse_cycle =
data->current[channel] & PWM_NRFX_CH_PULSE_CYCLES_MASK;
return (pulse_cycle > 0 && pulse_cycle < data->countertop);
}
static bool any_other_channel_is_active(uint8_t channel,
const struct pwm_nrfx_data *data)
{
uint8_t i;
for (i = 0; i < NRF_PWM_CHANNEL_COUNT; ++i) {
if (i != channel && pwm_channel_is_active(i, data)) {
return true;
}
}
return false;
}
static bool channel_psel_get(uint32_t channel, uint32_t *psel,
const struct pwm_nrfx_config *config)
{
*psel = nrf_pwm_pin_get(config->pwm.p_registers, channel);
return (((*psel & PWM_PSEL_OUT_CONNECT_Msk) >> PWM_PSEL_OUT_CONNECT_Pos)
== PWM_PSEL_OUT_CONNECT_Connected);
}
static int pwm_nrfx_set_cycles(const struct device *dev, uint32_t channel,
uint32_t period_cycles, uint32_t pulse_cycles,
pwm_flags_t flags)
{
/* We assume here that period_cycles will always be 16MHz
* peripheral clock. Since pwm_nrfx_get_cycles_per_sec() function might
* be removed, see ISSUE #6958.
* TODO: Remove this comment when issue has been resolved.
*/
const struct pwm_nrfx_config *config = dev->config;
struct pwm_nrfx_data *data = dev->data;
bool inverted = (flags & PWM_POLARITY_INVERTED);
bool was_stopped;
if (channel >= NRF_PWM_CHANNEL_COUNT) {
LOG_ERR("Invalid channel: %u.", channel);
return -EINVAL;
}
/* Check if nrfx_pwm_stop function was called in previous
* pwm_nrfx_set_cycles call. Relying only on state returned by
* nrfx_pwm_is_stopped may cause race condition if the
* pwm_nrfx_set_cycles is called multiple times in quick succession.
*/
was_stopped = !pwm_channel_is_active(channel, data) &&
!any_other_channel_is_active(channel, data);
/* If this PWM is in center-aligned mode, pulse and period lengths
* are effectively doubled by the up-down count, so halve them here
* to compensate.
*/
if (config->initial_config.count_mode == NRF_PWM_MODE_UP_AND_DOWN) {
period_cycles /= 2;
pulse_cycles /= 2;
}
/* Check if period_cycles is either matching currently used, or
* possible to use with our prescaler options.
* Don't do anything if the period length happens to be zero.
* In such case, the channel is treated as inactive.
*/
if (period_cycles != 0 && period_cycles != data->period_cycles) {
int ret = pwm_period_check_and_set(config, data, channel,
period_cycles);
if (ret) {
return ret;
}
}
data->current[channel] =
PWM_NRFX_CH_VALUE(pulse_cycles >> data->prescaler, inverted);
LOG_DBG("channel %u, pulse %u, period %u, prescaler: %u.",
channel, pulse_cycles, period_cycles, data->prescaler);
/* If this channel turns out to not need to be driven by the PWM
* peripheral (it is off or fully on - duty 0% or 100%), set properly
* the GPIO configuration for its output pin. This will provide
* the correct output state for this channel when the PWM peripheral
* is disabled after all channels appear to be inactive.
*/
if (!pwm_channel_is_active(channel, data)) {
uint32_t psel;
if (channel_psel_get(channel, &psel, config)) {
/* If pulse 0% and pin not inverted, set LOW.
* If pulse 100% and pin inverted, set LOW.
* If pulse 0% and pin inverted, set HIGH.
* If pulse 100% and pin not inverted, set HIGH.
*/
bool pulse_0_and_not_inverted =
(pulse_cycles == 0U) && !inverted;
bool pulse_100_and_inverted =
(pulse_cycles == period_cycles) && inverted;
uint32_t value = (pulse_0_and_not_inverted ||
pulse_100_and_inverted) ? 0 : 1;
nrf_gpio_pin_write(psel, value);
}
if (!any_other_channel_is_active(channel, data)) {
nrfx_pwm_stop(&config->pwm, false);
}
} else {
/* Since we are playing the sequence in a loop, the
* sequence only has to be started when its not already
* playing. The new channel values will be used
* immediately when they are written into the seq array.
*/
if (was_stopped) {
/* Wait until PWM will be stopped and then start the
* sequence.
*/
while (!nrfx_pwm_is_stopped(&config->pwm)) {
}
nrfx_pwm_simple_playback(&config->pwm,
&config->seq,
1,
NRFX_PWM_FLAG_LOOP);
}
}
return 0;
}
static int pwm_nrfx_get_cycles_per_sec(const struct device *dev, uint32_t channel,
uint64_t *cycles)
{
/* TODO: Since this function might be removed, we will always return
* 16MHz from this function and handle the conversion with prescaler,
* etc, in the pin set function. See issue #6958.
*/
*cycles = 16ul * 1000ul * 1000ul;
return 0;
}
static const struct pwm_driver_api pwm_nrfx_drv_api_funcs = {
.set_cycles = pwm_nrfx_set_cycles,
.get_cycles_per_sec = pwm_nrfx_get_cycles_per_sec,
};
static int pwm_nrfx_init(const struct device *dev)
{
const struct pwm_nrfx_config *config = dev->config;
struct pwm_nrfx_data *data = dev->data;
#ifdef CONFIG_PINCTRL
int ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
data->initially_inverted = 0;
for (size_t i = 0; i < ARRAY_SIZE(data->current); i++) {
uint32_t psel;
if (channel_psel_get(i, &psel, config)) {
/* Mark channels as inverted according to what initial
* state of their outputs has been set by pinctrl (high
* idle state means that the channel is inverted).
*/
data->initially_inverted |=
nrf_gpio_pin_out_read(psel) ? BIT(i) : 0;
}
}
#endif
for (size_t i = 0; i < ARRAY_SIZE(data->current); i++) {
bool inverted = data->initially_inverted & BIT(i);
data->current[i] = PWM_NRFX_CH_VALUE(0, inverted);
}
nrfx_err_t result = nrfx_pwm_init(&config->pwm,
&config->initial_config,
NULL,
NULL);
if (result != NRFX_SUCCESS) {
LOG_ERR("Failed to initialize device: %s", dev->name);
return -EBUSY;
}
return 0;
}
#ifdef CONFIG_PM_DEVICE
static void pwm_nrfx_uninit(const struct device *dev)
{
const struct pwm_nrfx_config *config = dev->config;
nrfx_pwm_uninit(&config->pwm);
memset(dev->data, 0, sizeof(struct pwm_nrfx_data));
}
static int pwm_nrfx_pm_action(const struct device *dev,
enum pm_device_action action)
{
#ifdef CONFIG_PINCTRL
const struct pwm_nrfx_config *config = dev->config;
#endif
int ret = 0;
switch (action) {
case PM_DEVICE_ACTION_RESUME:
#ifdef CONFIG_PINCTRL
ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
#endif
ret = pwm_nrfx_init(dev);
break;
case PM_DEVICE_ACTION_SUSPEND:
pwm_nrfx_uninit(dev);
#ifdef CONFIG_PINCTRL
ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_SLEEP);
if (ret < 0) {
return ret;
}
#endif
break;
default:
return -ENOTSUP;
}
return ret;
}
#else
#define pwm_nrfx_pm_action NULL
#endif /* CONFIG_PM_DEVICE */
#define PWM(dev_idx) DT_NODELABEL(pwm##dev_idx)
#define PWM_PROP(dev_idx, prop) DT_PROP(PWM(dev_idx), prop)
#define PWM_CH_INVERTED(dev_idx, ch_idx) \
PWM_PROP(dev_idx, ch##ch_idx##_inverted)
#define PWM_OUTPUT_PIN(dev_idx, ch_idx) \
COND_CODE_1(DT_NODE_HAS_PROP(PWM(dev_idx), ch##ch_idx##_pin), \
(PWM_PROP(dev_idx, ch##ch_idx##_pin) | \
(PWM_CH_INVERTED(dev_idx, ch_idx) \
? NRFX_PWM_PIN_INVERTED : 0)), \
(NRFX_PWM_PIN_NOT_USED))
#define PWM_NRFX_DEVICE(idx) \
NRF_DT_CHECK_PIN_ASSIGNMENTS(PWM(idx), 1, \
ch0_pin, ch1_pin, ch2_pin, ch3_pin); \
static struct pwm_nrfx_data pwm_nrfx_##idx##_data = { \
COND_CODE_1(CONFIG_PINCTRL, (), \
(.initially_inverted = \
(PWM_CH_INVERTED(idx, 0) ? BIT(0) : 0) | \
(PWM_CH_INVERTED(idx, 1) ? BIT(1) : 0) | \
(PWM_CH_INVERTED(idx, 2) ? BIT(2) : 0) | \
(PWM_CH_INVERTED(idx, 3) ? BIT(3) : 0),)) \
}; \
IF_ENABLED(CONFIG_PINCTRL, (PINCTRL_DT_DEFINE(PWM(idx)))); \
static const struct pwm_nrfx_config pwm_nrfx_##idx##_config = { \
.pwm = NRFX_PWM_INSTANCE(idx), \
.initial_config = { \
COND_CODE_1(CONFIG_PINCTRL, \
(.skip_gpio_cfg = true, \
.skip_psel_cfg = true,), \
(.output_pins = { \
PWM_OUTPUT_PIN(idx, 0), \
PWM_OUTPUT_PIN(idx, 1), \
PWM_OUTPUT_PIN(idx, 2), \
PWM_OUTPUT_PIN(idx, 3), \
},)) \
.base_clock = NRF_PWM_CLK_1MHz, \
.count_mode = (PWM_PROP(idx, center_aligned) \
? NRF_PWM_MODE_UP_AND_DOWN \
: NRF_PWM_MODE_UP), \
.top_value = 1000, \
.load_mode = NRF_PWM_LOAD_INDIVIDUAL, \
.step_mode = NRF_PWM_STEP_TRIGGERED, \
}, \
.seq.values.p_raw = pwm_nrfx_##idx##_data.current, \
.seq.length = NRF_PWM_CHANNEL_COUNT, \
IF_ENABLED(CONFIG_PINCTRL, \
(.pcfg = PINCTRL_DT_DEV_CONFIG_GET(PWM(idx)),)) \
}; \
PM_DEVICE_DT_DEFINE(PWM(idx), pwm_nrfx_pm_action); \
DEVICE_DT_DEFINE(PWM(idx), \
pwm_nrfx_init, PM_DEVICE_DT_GET(PWM(idx)), \
&pwm_nrfx_##idx##_data, \
&pwm_nrfx_##idx##_config, \
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \
&pwm_nrfx_drv_api_funcs)
#if DT_NODE_HAS_STATUS(DT_NODELABEL(pwm0), okay)
PWM_NRFX_DEVICE(0);
#endif
#if DT_NODE_HAS_STATUS(DT_NODELABEL(pwm1), okay)
PWM_NRFX_DEVICE(1);
#endif
#if DT_NODE_HAS_STATUS(DT_NODELABEL(pwm2), okay)
PWM_NRFX_DEVICE(2);
#endif
#if DT_NODE_HAS_STATUS(DT_NODELABEL(pwm3), okay)
PWM_NRFX_DEVICE(3);
#endif