zephyr/drivers/sensor/st/lsm6dsv16x/lsm6dsv16x_shub.c

842 lines
21 KiB
C

/* ST Microelectronics LSM6DSV16X 6-axis IMU sensor driver
*
* Copyright (c) 2023 STMicroelectronics
*
* SPDX-License-Identifier: Apache-2.0
*
* Datasheet:
* https://www.st.com/resource/en/datasheet/lsm6dsv16x.pdf
*/
#define DT_DRV_COMPAT st_lsm6dsv16x
#include <zephyr/device.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/sys/util.h>
#include <zephyr/kernel.h>
#include <zephyr/drivers/sensor.h>
#include <zephyr/logging/log.h>
#include "lsm6dsv16x.h"
LOG_MODULE_DECLARE(LSM6DSV16X, CONFIG_SENSOR_LOG_LEVEL);
static int lsm6dsv16x_shub_write_target_reg(const struct device *dev,
uint8_t trgt_addr, uint8_t trgt_reg,
uint8_t *value, uint16_t len);
static int lsm6dsv16x_shub_read_target_reg(const struct device *dev,
uint8_t trgt_addr, uint8_t trgt_reg,
uint8_t *value, uint16_t len);
static void lsm6dsv16x_shub_enable(const struct device *dev, uint8_t enable);
/* ST HAL skips this register, only supports it via the slower lsm6dsv16x_sh_status_get() */
static int32_t lsm6dsv16x_sh_status_mainpage_get(stmdev_ctx_t *ctx,
lsm6dsv16x_status_master_t *val)
{
return lsm6dsv16x_read_reg(ctx, LSM6DSV16X_STATUS_MASTER_MAINPAGE, (uint8_t *)val, 1);
}
/*
* LIS2MDL magn device specific part
*/
#ifdef CONFIG_LSM6DSV16X_EXT_LIS2MDL
#define LIS2MDL_CFG_REG_A 0x60
#define LIS2MDL_CFG_REG_B 0x61
#define LIS2MDL_CFG_REG_C 0x62
#define LIS2MDL_STATUS_REG 0x67
#define LIS2MDL_SW_RESET 0x20
#define LIS2MDL_ODR_10HZ 0x00
#define LIS2MDL_ODR_100HZ 0x0C
#define LIS2MDL_OFF_CANC 0x02
#define LIS2MDL_SENSITIVITY 1500
static int lsm6dsv16x_lis2mdl_init(const struct device *dev, uint8_t i2c_addr)
{
struct lsm6dsv16x_data *data = dev->data;
uint8_t mag_cfg[2];
data->magn_gain = LIS2MDL_SENSITIVITY;
/* sw reset device */
mag_cfg[0] = LIS2MDL_SW_RESET;
lsm6dsv16x_shub_write_target_reg(dev, i2c_addr,
LIS2MDL_CFG_REG_A, mag_cfg, 1);
k_sleep(K_MSEC(10)); /* turn-on time in ms */
/* configure mag */
mag_cfg[0] = LIS2MDL_ODR_10HZ;
mag_cfg[1] = LIS2MDL_OFF_CANC;
lsm6dsv16x_shub_write_target_reg(dev, i2c_addr,
LIS2MDL_CFG_REG_A, mag_cfg, 2);
return 0;
}
static const uint16_t lis2mdl_map[] = {10, 20, 50, 100};
static int lsm6dsv16x_lis2mdl_odr_set(const struct device *dev,
uint8_t i2c_addr, uint16_t freq)
{
uint8_t odr, cfg;
for (odr = 0; odr < ARRAY_SIZE(lis2mdl_map); odr++) {
if (freq <= lis2mdl_map[odr]) {
break;
}
}
if (odr == ARRAY_SIZE(lis2mdl_map)) {
LOG_DBG("shub: LIS2MDL freq val %d not supported.", freq);
return -ENOTSUP;
}
cfg = (odr << 2);
lsm6dsv16x_shub_write_target_reg(dev, i2c_addr,
LIS2MDL_CFG_REG_A, &cfg, 1);
lsm6dsv16x_shub_enable(dev, 1);
return 0;
}
static int lsm6dsv16x_lis2mdl_conf(const struct device *dev, uint8_t i2c_addr,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (attr) {
case SENSOR_ATTR_SAMPLING_FREQUENCY:
return lsm6dsv16x_lis2mdl_odr_set(dev, i2c_addr, val->val1);
default:
LOG_DBG("shub: LIS2MDL attribute not supported.");
return -ENOTSUP;
}
return 0;
}
#endif /* CONFIG_LSM6DSV16X_EXT_LIS2MDL */
/*
* HTS221 humidity device specific part
*/
#ifdef CONFIG_LSM6DSV16X_EXT_HTS221
#define HTS221_AUTOINCREMENT BIT(7)
#define HTS221_REG_CTRL1 0x20
#define HTS221_ODR_1HZ 0x01
#define HTS221_BDU 0x04
#define HTS221_PD 0x80
#define HTS221_REG_CONV_START 0x30
static int lsm6dsv16x_hts221_read_conv_data(const struct device *dev,
uint8_t i2c_addr)
{
struct lsm6dsv16x_data *data = dev->data;
uint8_t buf[16], i;
struct hts221_data *ht = &data->hts221;
for (i = 0; i < sizeof(buf); i += 7) {
unsigned char len = MIN(7, sizeof(buf) - i);
if (lsm6dsv16x_shub_read_target_reg(dev, i2c_addr,
(HTS221_REG_CONV_START + i) |
HTS221_AUTOINCREMENT,
&buf[i], len) < 0) {
LOG_DBG("shub: failed to read hts221 conv data");
return -EIO;
}
}
ht->y0 = buf[0] / 2;
ht->y1 = buf[1] / 2;
ht->x0 = buf[6] | (buf[7] << 8);
ht->x1 = buf[10] | (buf[11] << 8);
return 0;
}
static int lsm6dsv16x_hts221_init(const struct device *dev, uint8_t i2c_addr)
{
uint8_t hum_cfg;
/* configure ODR and BDU */
hum_cfg = HTS221_ODR_1HZ | HTS221_BDU | HTS221_PD;
lsm6dsv16x_shub_write_target_reg(dev, i2c_addr,
HTS221_REG_CTRL1, &hum_cfg, 1);
return lsm6dsv16x_hts221_read_conv_data(dev, i2c_addr);
}
static const uint16_t hts221_map[] = {0, 1, 7, 12};
static int lsm6dsv16x_hts221_odr_set(const struct device *dev,
uint8_t i2c_addr, uint16_t freq)
{
uint8_t odr, cfg;
for (odr = 0; odr < ARRAY_SIZE(hts221_map); odr++) {
if (freq <= hts221_map[odr]) {
break;
}
}
if (odr == ARRAY_SIZE(hts221_map)) {
LOG_DBG("shub: HTS221 freq val %d not supported.", freq);
return -ENOTSUP;
}
cfg = odr | HTS221_BDU | HTS221_PD;
lsm6dsv16x_shub_write_target_reg(dev, i2c_addr,
HTS221_REG_CTRL1, &cfg, 1);
lsm6dsv16x_shub_enable(dev, 1);
return 0;
}
static int lsm6dsv16x_hts221_conf(const struct device *dev, uint8_t i2c_addr,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (attr) {
case SENSOR_ATTR_SAMPLING_FREQUENCY:
return lsm6dsv16x_hts221_odr_set(dev, i2c_addr, val->val1);
default:
LOG_DBG("shub: HTS221 attribute not supported.");
return -ENOTSUP;
}
return 0;
}
#endif /* CONFIG_LSM6DSV16X_EXT_HTS221 */
/*
* LPS22HB baro/temp device specific part
*/
#ifdef CONFIG_LSM6DSV16X_EXT_LPS22HB
#define LPS22HB_CTRL_REG1 0x10
#define LPS22HB_CTRL_REG2 0x11
#define LPS22HB_SW_RESET 0x04
#define LPS22HB_ODR_10HZ 0x20
#define LPS22HB_LPF_EN 0x08
#define LPS22HB_BDU_EN 0x02
static int lsm6dsv16x_lps22hb_init(const struct device *dev, uint8_t i2c_addr)
{
uint8_t baro_cfg[2];
/* sw reset device */
baro_cfg[0] = LPS22HB_SW_RESET;
lsm6dsv16x_shub_write_target_reg(dev, i2c_addr,
LPS22HB_CTRL_REG2, baro_cfg, 1);
k_sleep(K_MSEC(1)); /* turn-on time in ms */
/* configure device */
baro_cfg[0] = LPS22HB_ODR_10HZ | LPS22HB_LPF_EN | LPS22HB_BDU_EN;
lsm6dsv16x_shub_write_target_reg(dev, i2c_addr,
LPS22HB_CTRL_REG1, baro_cfg, 1);
return 0;
}
#endif /* CONFIG_LSM6DSV16X_EXT_LPS22HB */
/*
* LPS22HH baro/temp device specific part
*/
#ifdef CONFIG_LSM6DSV16X_EXT_LPS22HH
#define LPS22HH_CTRL_REG1 0x10
#define LPS22HH_CTRL_REG2 0x11
#define LPS22HH_SW_RESET 0x04
#define LPS22HH_IF_ADD_INC 0x10
#define LPS22HH_ODR_10HZ 0x20
#define LPS22HH_LPF_EN 0x08
#define LPS22HH_BDU_EN 0x02
static int lsm6dsv16x_lps22hh_init(const struct device *dev, uint8_t i2c_addr)
{
uint8_t baro_cfg[2];
/* sw reset device */
baro_cfg[0] = LPS22HH_SW_RESET;
lsm6dsv16x_shub_write_target_reg(dev, i2c_addr,
LPS22HH_CTRL_REG2, baro_cfg, 1);
k_sleep(K_MSEC(100)); /* turn-on time in ms */
/* configure device */
baro_cfg[0] = LPS22HH_IF_ADD_INC;
lsm6dsv16x_shub_write_target_reg(dev, i2c_addr,
LPS22HH_CTRL_REG2, baro_cfg, 1);
baro_cfg[0] = LPS22HH_ODR_10HZ | LPS22HH_LPF_EN | LPS22HH_BDU_EN;
lsm6dsv16x_shub_write_target_reg(dev, i2c_addr,
LPS22HH_CTRL_REG1, baro_cfg, 1);
return 0;
}
static const uint16_t lps22hh_map[] = {0, 1, 10, 25, 50, 75, 100, 200};
static int lsm6dsv16x_lps22hh_odr_set(const struct device *dev,
uint8_t i2c_addr, uint16_t freq)
{
uint8_t odr, cfg;
for (odr = 0; odr < ARRAY_SIZE(lps22hh_map); odr++) {
if (freq <= lps22hh_map[odr]) {
break;
}
}
if (odr == ARRAY_SIZE(lps22hh_map)) {
LOG_DBG("shub: LPS22HH freq val %d not supported.", freq);
return -ENOTSUP;
}
cfg = (odr << 4) | LPS22HH_LPF_EN | LPS22HH_BDU_EN;
lsm6dsv16x_shub_write_target_reg(dev, i2c_addr,
LPS22HH_CTRL_REG1, &cfg, 1);
lsm6dsv16x_shub_enable(dev, 1);
return 0;
}
static int lsm6dsv16x_lps22hh_conf(const struct device *dev, uint8_t i2c_addr,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (attr) {
case SENSOR_ATTR_SAMPLING_FREQUENCY:
return lsm6dsv16x_lps22hh_odr_set(dev, i2c_addr, val->val1);
default:
LOG_DBG("shub: LPS22HH attribute not supported.");
return -ENOTSUP;
}
return 0;
}
#endif /* CONFIG_LSM6DSV16X_EXT_LPS22HH */
/*
* LPS22DF baro/temp device specific part
*/
#ifdef CONFIG_LSM6DSV16X_EXT_LPS22DF
#define LPS22DF_CTRL_REG1 0x10
#define LPS22DF_CTRL_REG2 0x11
#define LPS22DF_SW_RESET 0x04
#define LPS22DF_BDU_EN 0x08
#define LPS22DF_EN_LPFP 0x10
#define LPS22DF_ODR_10HZ 0x18
#define LPS22DF_AVG_16 0x02
static int lsm6dsv16x_lps22df_init(const struct device *dev, uint8_t i2c_addr)
{
uint8_t baro_cfg[2];
/* sw reset device */
baro_cfg[0] = LPS22DF_SW_RESET;
lsm6dsv16x_shub_write_target_reg(dev, i2c_addr,
LPS22DF_CTRL_REG2, baro_cfg, 1);
k_busy_wait(50); /* turn-on time in us */
/* configure device */
baro_cfg[0] = LPS22DF_BDU_EN | LPS22DF_EN_LPFP;
lsm6dsv16x_shub_write_target_reg(dev, i2c_addr,
LPS22DF_CTRL_REG2, baro_cfg, 1);
baro_cfg[0] = LPS22DF_ODR_10HZ | LPS22DF_AVG_16;
lsm6dsv16x_shub_write_target_reg(dev, i2c_addr,
LPS22DF_CTRL_REG1, baro_cfg, 1);
return 0;
}
static const uint16_t lps22df_map[] = {0, 1, 4, 10, 25, 50, 75, 100, 200};
static int lsm6dsv16x_lps22df_odr_set(const struct device *dev,
uint8_t i2c_addr, uint16_t freq)
{
uint8_t odr, cfg;
for (odr = 0; odr < ARRAY_SIZE(lps22df_map); odr++) {
if (freq <= lps22df_map[odr]) {
break;
}
}
if (odr == ARRAY_SIZE(lps22df_map)) {
LOG_DBG("shub: LPS22DF freq val %d not supported.", freq);
return -ENOTSUP;
}
cfg = (odr << 3) | LPS22DF_AVG_16;
lsm6dsv16x_shub_write_target_reg(dev, i2c_addr,
LPS22DF_CTRL_REG1, &cfg, 1);
lsm6dsv16x_shub_enable(dev, 1);
return 0;
}
static int lsm6dsv16x_lps22df_conf(const struct device *dev, uint8_t i2c_addr,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (attr) {
case SENSOR_ATTR_SAMPLING_FREQUENCY:
return lsm6dsv16x_lps22df_odr_set(dev, i2c_addr, val->val1);
default:
LOG_DBG("shub: LPS22DF attribute not supported.");
return -ENOTSUP;
}
return 0;
}
#endif /* CONFIG_LSM6DSV16X_EXT_LPS22DF */
/* List of supported external sensors */
static struct lsm6dsv16x_shub_slist {
enum sensor_channel type;
uint8_t i2c_addr[2];
uint8_t ext_i2c_addr;
uint8_t wai_addr;
uint8_t wai_val;
uint8_t out_data_addr;
uint8_t out_data_len;
uint8_t sh_out_reg;
int (*dev_init)(const struct device *dev, uint8_t i2c_addr);
int (*dev_conf)(const struct device *dev, uint8_t i2c_addr,
enum sensor_channel chan, enum sensor_attribute attr,
const struct sensor_value *val);
} lsm6dsv16x_shub_slist[] = {
#ifdef CONFIG_LSM6DSV16X_EXT_LIS2MDL
{
/* LIS2MDL */
.type = SENSOR_CHAN_MAGN_XYZ,
.i2c_addr = { 0x1E },
.wai_addr = 0x4F,
.wai_val = 0x40,
.out_data_addr = 0x68,
.out_data_len = 0x06,
.dev_init = (lsm6dsv16x_lis2mdl_init),
.dev_conf = (lsm6dsv16x_lis2mdl_conf),
},
#endif /* CONFIG_LSM6DSV16X_EXT_LIS2MDL */
#ifdef CONFIG_LSM6DSV16X_EXT_HTS221
{
/* HTS221 */
.type = SENSOR_CHAN_HUMIDITY,
.i2c_addr = { 0x5F },
.wai_addr = 0x0F,
.wai_val = 0xBC,
.out_data_addr = 0x28 | HTS221_AUTOINCREMENT,
.out_data_len = 0x02,
.dev_init = (lsm6dsv16x_hts221_init),
.dev_conf = (lsm6dsv16x_hts221_conf),
},
#endif /* CONFIG_LSM6DSV16X_EXT_HTS221 */
#ifdef CONFIG_LSM6DSV16X_EXT_LPS22HB
{
/* LPS22HB */
.type = SENSOR_CHAN_PRESS,
.i2c_addr = { 0x5C, 0x5D },
.wai_addr = 0x0F,
.wai_val = 0xB1,
.out_data_addr = 0x28,
.out_data_len = 0x05,
.dev_init = (lsm6dsv16x_lps22hb_init),
},
#endif /* CONFIG_LSM6DSV16X_EXT_LPS22HB */
#ifdef CONFIG_LSM6DSV16X_EXT_LPS22HH
{
/* LPS22HH */
.type = SENSOR_CHAN_PRESS,
.i2c_addr = { 0x5C, 0x5D },
.wai_addr = 0x0F,
.wai_val = 0xB3,
.out_data_addr = 0x28,
.out_data_len = 0x05,
.dev_init = (lsm6dsv16x_lps22hh_init),
.dev_conf = (lsm6dsv16x_lps22hh_conf),
},
#endif /* CONFIG_LSM6DSV16X_EXT_LPS22HH */
#ifdef CONFIG_LSM6DSV16X_EXT_LPS22DF
{
/* LPS22DF */
.type = SENSOR_CHAN_PRESS,
.i2c_addr = { 0x5C, 0x5D },
.wai_addr = 0x0F,
.wai_val = 0xB4,
.out_data_addr = 0x28,
.out_data_len = 0x05,
.dev_init = (lsm6dsv16x_lps22df_init),
.dev_conf = (lsm6dsv16x_lps22df_conf),
},
#endif /* CONFIG_LSM6DSV16X_EXT_LPS22DF */
};
static int lsm6dsv16x_shub_wait_completed(stmdev_ctx_t *ctx)
{
lsm6dsv16x_status_master_t status;
int tries = 200; /* Should be max ~160 ms, from 2 cycles at slowest ODR 12.5 Hz */
do {
if (!--tries) {
LOG_DBG("shub: Timeout waiting for operation to complete");
return -ETIMEDOUT;
}
k_msleep(1);
lsm6dsv16x_sh_status_mainpage_get(ctx, &status);
} while (status.sens_hub_endop == 0);
return 1;
}
static void lsm6dsv16x_shub_enable(const struct device *dev, uint8_t enable)
{
const struct lsm6dsv16x_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
struct lsm6dsv16x_data *data = dev->data;
/* Enable Accel @26hz */
if (!data->accel_freq) {
uint8_t odr = (enable) ? 2 : 0;
if (lsm6dsv16x_xl_data_rate_set(ctx, odr) < 0) {
LOG_DBG("shub: failed to set XL sampling rate");
return;
}
}
if (enable) {
lsm6dsv16x_status_master_t status;
/* Clear any pending status flags */
lsm6dsv16x_sh_status_mainpage_get(ctx, &status);
}
if (lsm6dsv16x_sh_master_set(ctx, enable) < 0) {
LOG_DBG("shub: failed to set master on");
lsm6dsv16x_mem_bank_set(ctx, LSM6DSV16X_MAIN_MEM_BANK);
return;
}
if (!enable) {
/* wait 300us (necessary per AN5763 §7.2.1) */
k_busy_wait(300);
}
}
/* must be called with master on */
static int lsm6dsv16x_shub_check_slv0_nack(stmdev_ctx_t *ctx)
{
lsm6dsv16x_all_sources_t status;
if (lsm6dsv16x_all_sources_get(ctx, &status) < 0) {
LOG_DBG("shub: error reading embedded reg");
return -EIO;
}
if (status.sh_slave0_nack) {
LOG_DBG("shub: TRGT 0 nacked");
return -EIO;
}
return 0;
}
/*
* use TRGT 0 for generic read to target device
*/
static int lsm6dsv16x_shub_read_target_reg(const struct device *dev,
uint8_t trgt_addr, uint8_t trgt_reg,
uint8_t *value, uint16_t len)
{
const struct lsm6dsv16x_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
lsm6dsv16x_sh_cfg_read_t trgt_cfg;
trgt_cfg.slv_add = trgt_addr;
trgt_cfg.slv_subadd = trgt_reg;
trgt_cfg.slv_len = len;
lsm6dsv16x_sh_slv_cfg_read(ctx, 0, &trgt_cfg);
/* turn SH on, wait for shub i2c read to finish */
lsm6dsv16x_shub_enable(dev, 1);
lsm6dsv16x_shub_wait_completed(ctx);
/* read data from external target */
if (lsm6dsv16x_sh_read_data_raw_get(ctx, value, len) < 0) {
LOG_DBG("shub: error reading sensor data");
return -EIO;
}
if (lsm6dsv16x_shub_check_slv0_nack(ctx) < 0) {
lsm6dsv16x_shub_enable(dev, 0);
return -EIO;
}
lsm6dsv16x_shub_enable(dev, 0);
return 0;
}
/*
* use TRGT 0 to configure target device
*/
static int lsm6dsv16x_shub_write_target_reg(const struct device *dev,
uint8_t trgt_addr, uint8_t trgt_reg,
uint8_t *value, uint16_t len)
{
const struct lsm6dsv16x_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
lsm6dsv16x_sh_cfg_write_t trgt_cfg;
uint8_t cnt = 0U;
lsm6dsv16x_shub_enable(dev, 0);
while (cnt < len) {
trgt_cfg.slv0_add = trgt_addr;
trgt_cfg.slv0_subadd = trgt_reg + cnt;
trgt_cfg.slv0_data = value[cnt];
lsm6dsv16x_sh_cfg_write(ctx, &trgt_cfg);
/* turn SH on, wait for shub i2c write to finish */
lsm6dsv16x_shub_enable(dev, 1);
lsm6dsv16x_shub_wait_completed(ctx);
if (lsm6dsv16x_shub_check_slv0_nack(ctx) < 0) {
lsm6dsv16x_shub_enable(dev, 0);
return -EIO;
}
lsm6dsv16x_shub_enable(dev, 0);
cnt++;
}
/* Put TRGT 0 in IDLE mode */
trgt_cfg.slv0_add = 0x7;
trgt_cfg.slv0_subadd = 0x0;
trgt_cfg.slv0_data = 0x0;
lsm6dsv16x_sh_cfg_write(ctx, &trgt_cfg);
return 0;
}
/*
* TARGETs configurations:
*
* - TARGET 0: used for configuring all target devices
* - TARGET 1: used as data read channel for external target device #1
* - TARGET 2: used as data read channel for external target device #2
* - TARGET 3: used for generic reads while data channel is enabled
*/
static int lsm6dsv16x_shub_set_data_channel(const struct device *dev)
{
struct lsm6dsv16x_data *data = dev->data;
const struct lsm6dsv16x_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
uint8_t n;
struct lsm6dsv16x_shub_slist *sp;
lsm6dsv16x_sh_cfg_read_t trgt_cfg;
/* Configure shub data channels to access external targets */
for (n = 0; n < data->num_ext_dev; n++) {
sp = &lsm6dsv16x_shub_slist[data->shub_ext[n]];
trgt_cfg.slv_add = sp->ext_i2c_addr;
trgt_cfg.slv_subadd = sp->out_data_addr;
trgt_cfg.slv_len = sp->out_data_len;
if (lsm6dsv16x_sh_slv_cfg_read(ctx, n + 1, &trgt_cfg) < 0) {
LOG_DBG("shub: error configuring shub for ext targets");
return -EIO;
}
}
/* Configure the master */
lsm6dsv16x_sh_slave_connected_t aux = LSM6DSV16X_SLV_0_1_2;
if (lsm6dsv16x_sh_slave_connected_set(ctx, aux) < 0) {
LOG_DBG("shub: error setting aux sensors");
return -EIO;
}
/* turn SH on, no need to wait for 1st shub i2c read, if any, to complete */
lsm6dsv16x_shub_enable(dev, 1);
return 0;
}
int lsm6dsv16x_shub_get_idx(const struct device *dev, enum sensor_channel type)
{
uint8_t n;
struct lsm6dsv16x_data *data = dev->data;
struct lsm6dsv16x_shub_slist *sp;
for (n = 0; n < data->num_ext_dev; n++) {
sp = &lsm6dsv16x_shub_slist[data->shub_ext[n]];
if (sp->type == type) {
return n;
}
}
LOG_ERR("shub: dev %s type %d not supported", dev->name, type);
return -ENOTSUP;
}
int lsm6dsv16x_shub_fetch_external_devs(const struct device *dev)
{
uint8_t n;
const struct lsm6dsv16x_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
struct lsm6dsv16x_data *data = dev->data;
struct lsm6dsv16x_shub_slist *sp;
/* read data from external target */
if (lsm6dsv16x_mem_bank_set(ctx, LSM6DSV16X_SENSOR_HUB_MEM_BANK) < 0) {
LOG_DBG("failed to enter SENSOR_HUB bank");
return -EIO;
}
for (n = 0; n < data->num_ext_dev; n++) {
sp = &lsm6dsv16x_shub_slist[data->shub_ext[n]];
if (lsm6dsv16x_read_reg(ctx, sp->sh_out_reg,
data->ext_data[n], sp->out_data_len) < 0) {
LOG_DBG("shub: failed to read sample");
(void) lsm6dsv16x_mem_bank_set(ctx, LSM6DSV16X_MAIN_MEM_BANK);
return -EIO;
}
}
return lsm6dsv16x_mem_bank_set(ctx, LSM6DSV16X_MAIN_MEM_BANK);
}
int lsm6dsv16x_shub_config(const struct device *dev, enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
struct lsm6dsv16x_data *data = dev->data;
struct lsm6dsv16x_shub_slist *sp = NULL;
uint8_t n;
for (n = 0; n < data->num_ext_dev; n++) {
sp = &lsm6dsv16x_shub_slist[data->shub_ext[n]];
if (sp->type == chan) {
break;
}
}
if (n == data->num_ext_dev) {
LOG_DBG("shub: %s chan %d not supported", dev->name, chan);
return -ENOTSUP;
}
if (sp == NULL || sp->dev_conf == NULL) {
LOG_DBG("shub: chan not configurable");
return -ENOTSUP;
}
return sp->dev_conf(dev, sp->ext_i2c_addr, chan, attr, val);
}
int lsm6dsv16x_shub_init(const struct device *dev)
{
struct lsm6dsv16x_data *data = dev->data;
const struct lsm6dsv16x_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
uint8_t i, n = 0, regn;
uint8_t chip_id;
struct lsm6dsv16x_shub_slist *sp;
LOG_INF("shub: start sensorhub for %s", dev->name);
/*
* This must be set or lsm6dsv16x_shub_write_target_reg() will
* repeatedly write the same regi
*/
if (lsm6dsv16x_sh_write_mode_set(ctx, LSM6DSV16X_ONLY_FIRST_CYCLE) < 0) {
LOG_DBG("shub: error setting write once");
return -EIO;
}
for (n = 0; n < ARRAY_SIZE(lsm6dsv16x_shub_slist); n++) {
if (data->num_ext_dev >= LSM6DSV16X_SHUB_MAX_NUM_TARGETS) {
break;
}
chip_id = 0;
sp = &lsm6dsv16x_shub_slist[n];
/*
* The external sensor may have different I2C address.
* So, try them one by one until we read the correct
* chip ID.
*/
for (i = 0U; i < ARRAY_SIZE(sp->i2c_addr); i++) {
if (lsm6dsv16x_shub_read_target_reg(dev,
sp->i2c_addr[i],
sp->wai_addr,
&chip_id, 1) < 0) {
LOG_DBG("shub: failed reading chip id");
continue;
}
if (chip_id == sp->wai_val) {
break;
}
}
if (i >= ARRAY_SIZE(sp->i2c_addr)) {
LOG_DBG("shub: invalid chip id 0x%x", chip_id);
continue;
}
LOG_INF("shub: Ext Device Chip Id: %02x", chip_id);
sp->ext_i2c_addr = sp->i2c_addr[i];
data->shub_ext[data->num_ext_dev++] = n;
}
LOG_DBG("shub: dev %s - num_ext_dev %d", dev->name, data->num_ext_dev);
if (data->num_ext_dev == 0) {
LOG_ERR("shub: no target devices found");
return -EINVAL;
}
/* init external devices */
for (n = 0, regn = 0; n < data->num_ext_dev; n++) {
sp = &lsm6dsv16x_shub_slist[data->shub_ext[n]];
sp->sh_out_reg = LSM6DSV16X_SENSOR_HUB_1 + regn;
regn += sp->out_data_len;
sp->dev_init(dev, sp->ext_i2c_addr);
}
lsm6dsv16x_shub_set_data_channel(dev);
return 0;
}