zephyr/drivers/serial/uart_cc13xx_cc26xx.c

636 lines
17 KiB
C

/*
* Copyright (c) 2019 Brett Witherspoon
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT ti_cc13xx_cc26xx_uart
#include <zephyr/device.h>
#include <errno.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/sys/atomic.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/policy.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/drivers/pinctrl.h>
#include <driverlib/prcm.h>
#include <driverlib/uart.h>
#include <ti/drivers/Power.h>
#include <ti/drivers/power/PowerCC26X2.h>
#include <zephyr/irq.h>
struct uart_cc13xx_cc26xx_config {
uint32_t reg;
uint32_t sys_clk_freq;
};
enum uart_cc13xx_cc26xx_pm_locks {
UART_CC13XX_CC26XX_PM_LOCK_TX,
UART_CC13XX_CC26XX_PM_LOCK_RX,
UART_CC13XX_CC26XX_PM_LOCK_COUNT,
};
struct uart_cc13xx_cc26xx_data {
struct uart_config uart_config;
const struct pinctrl_dev_config *pcfg;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t callback;
void *user_data;
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#ifdef CONFIG_PM
Power_NotifyObj postNotify;
ATOMIC_DEFINE(pm_lock, UART_CC13XX_CC26XX_PM_LOCK_COUNT);
#endif
};
static int uart_cc13xx_cc26xx_poll_in(const struct device *dev,
unsigned char *c)
{
const struct uart_cc13xx_cc26xx_config *config = dev->config;
if (!UARTCharsAvail(config->reg)) {
return -1;
}
*c = UARTCharGetNonBlocking(config->reg);
return 0;
}
static void uart_cc13xx_cc26xx_poll_out(const struct device *dev,
unsigned char c)
{
const struct uart_cc13xx_cc26xx_config *config = dev->config;
UARTCharPut(config->reg, c);
/*
* Need to wait for character to be transmitted to ensure cpu does not
* enter standby when uart is busy
*/
while (UARTBusy(config->reg) == true) {
}
}
static int uart_cc13xx_cc26xx_err_check(const struct device *dev)
{
const struct uart_cc13xx_cc26xx_config *config = dev->config;
uint32_t flags = UARTRxErrorGet(config->reg);
int error = (flags & UART_RXERROR_FRAMING ? UART_ERROR_FRAMING : 0) |
(flags & UART_RXERROR_PARITY ? UART_ERROR_PARITY : 0) |
(flags & UART_RXERROR_BREAK ? UART_BREAK : 0) |
(flags & UART_RXERROR_OVERRUN ? UART_ERROR_OVERRUN : 0);
UARTRxErrorClear(config->reg);
return error;
}
static int uart_cc13xx_cc26xx_configure(const struct device *dev,
const struct uart_config *cfg)
{
const struct uart_cc13xx_cc26xx_config *config = dev->config;
struct uart_cc13xx_cc26xx_data *data = dev->data;
uint32_t line_ctrl = 0;
bool flow_ctrl;
switch (cfg->parity) {
case UART_CFG_PARITY_NONE:
line_ctrl |= UART_CONFIG_PAR_NONE;
break;
case UART_CFG_PARITY_ODD:
line_ctrl |= UART_CONFIG_PAR_ODD;
break;
case UART_CFG_PARITY_EVEN:
line_ctrl |= UART_CONFIG_PAR_EVEN;
break;
case UART_CFG_PARITY_MARK:
line_ctrl |= UART_CONFIG_PAR_ONE;
break;
case UART_CFG_PARITY_SPACE:
line_ctrl |= UART_CONFIG_PAR_ZERO;
break;
default:
return -EINVAL;
}
switch (cfg->stop_bits) {
case UART_CFG_STOP_BITS_1:
line_ctrl |= UART_CONFIG_STOP_ONE;
break;
case UART_CFG_STOP_BITS_2:
line_ctrl |= UART_CONFIG_STOP_TWO;
break;
case UART_CFG_STOP_BITS_0_5:
case UART_CFG_STOP_BITS_1_5:
return -ENOTSUP;
default:
return -EINVAL;
}
switch (cfg->data_bits) {
case UART_CFG_DATA_BITS_5:
line_ctrl |= UART_CONFIG_WLEN_5;
break;
case UART_CFG_DATA_BITS_6:
line_ctrl |= UART_CONFIG_WLEN_6;
break;
case UART_CFG_DATA_BITS_7:
line_ctrl |= UART_CONFIG_WLEN_7;
break;
case UART_CFG_DATA_BITS_8:
line_ctrl |= UART_CONFIG_WLEN_8;
break;
default:
return -EINVAL;
}
switch (cfg->flow_ctrl) {
case UART_CFG_FLOW_CTRL_NONE:
flow_ctrl = false;
break;
case UART_CFG_FLOW_CTRL_RTS_CTS:
flow_ctrl = true;
break;
case UART_CFG_FLOW_CTRL_DTR_DSR:
return -ENOTSUP;
default:
return -EINVAL;
}
/* Disables UART before setting control registers */
UARTConfigSetExpClk(config->reg,
config->sys_clk_freq, cfg->baudrate,
line_ctrl);
/* Clear all UART interrupts */
UARTIntClear(config->reg,
UART_INT_OE | UART_INT_BE | UART_INT_PE |
UART_INT_FE | UART_INT_RT | UART_INT_TX |
UART_INT_RX | UART_INT_CTS);
if (flow_ctrl) {
UARTHwFlowControlEnable(config->reg);
} else {
UARTHwFlowControlDisable(config->reg);
}
/* Re-enable UART */
UARTEnable(config->reg);
/* Disabled FIFOs act as 1-byte-deep holding registers (character mode) */
UARTFIFODisable(config->reg);
data->uart_config = *cfg;
return 0;
}
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
static int uart_cc13xx_cc26xx_config_get(const struct device *dev,
struct uart_config *cfg)
{
struct uart_cc13xx_cc26xx_data *data = dev->data;
*cfg = data->uart_config;
return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static int uart_cc13xx_cc26xx_fifo_fill(const struct device *dev,
const uint8_t *buf,
int len)
{
const struct uart_cc13xx_cc26xx_config *config = dev->config;
int n = 0;
while (n < len) {
if (!UARTCharPutNonBlocking(config->reg, buf[n])) {
break;
}
n++;
}
return n;
}
static int uart_cc13xx_cc26xx_fifo_read(const struct device *dev,
uint8_t *buf,
const int len)
{
const struct uart_cc13xx_cc26xx_config *config = dev->config;
int c, n;
n = 0;
while (n < len) {
c = UARTCharGetNonBlocking(config->reg);
if (c == -1) {
break;
}
buf[n++] = c;
}
return n;
}
static void uart_cc13xx_cc26xx_irq_tx_enable(const struct device *dev)
{
const struct uart_cc13xx_cc26xx_config *config = dev->config;
#ifdef CONFIG_PM
struct uart_cc13xx_cc26xx_data *data = dev->data;
if (!atomic_test_and_set_bit(data->pm_lock, UART_CC13XX_CC26XX_PM_LOCK_TX)) {
/*
* When tx irq is enabled, it is implicit that we are expecting
* to transmit using the uart, hence we should no longer go
* into standby.
*
* Instead of using pm_device_busy_set(), which currently does
* not impact the PM policy, we specifically disable the
* standby mode instead, since it is the power state that
* would interfere with a transfer.
*/
pm_policy_state_lock_get(PM_STATE_STANDBY, PM_ALL_SUBSTATES);
}
#endif
UARTIntEnable(config->reg, UART_INT_TX);
}
static void uart_cc13xx_cc26xx_irq_tx_disable(const struct device *dev)
{
const struct uart_cc13xx_cc26xx_config *config = dev->config;
UARTIntDisable(config->reg, UART_INT_TX);
#ifdef CONFIG_PM
struct uart_cc13xx_cc26xx_data *data = dev->data;
if (atomic_test_and_clear_bit(data->pm_lock, UART_CC13XX_CC26XX_PM_LOCK_TX)) {
pm_policy_state_lock_put(PM_STATE_STANDBY, PM_ALL_SUBSTATES);
}
#endif
}
static int uart_cc13xx_cc26xx_irq_tx_ready(const struct device *dev)
{
const struct uart_cc13xx_cc26xx_config *config = dev->config;
return UARTSpaceAvail(config->reg) ? 1 : 0;
}
static void uart_cc13xx_cc26xx_irq_rx_enable(const struct device *dev)
{
const struct uart_cc13xx_cc26xx_config *config = dev->config;
#ifdef CONFIG_PM
struct uart_cc13xx_cc26xx_data *data = dev->data;
/*
* When rx is enabled, it is implicit that we are expecting
* to receive from the uart, hence we can no longer go into
* standby.
*/
if (!atomic_test_and_set_bit(data->pm_lock, UART_CC13XX_CC26XX_PM_LOCK_RX)) {
pm_policy_state_lock_get(PM_STATE_STANDBY, PM_ALL_SUBSTATES);
}
#endif
UARTIntEnable(config->reg, UART_INT_RX);
}
static void uart_cc13xx_cc26xx_irq_rx_disable(const struct device *dev)
{
const struct uart_cc13xx_cc26xx_config *config = dev->config;
#ifdef CONFIG_PM
struct uart_cc13xx_cc26xx_data *data = dev->data;
if (atomic_test_and_clear_bit(data->pm_lock, UART_CC13XX_CC26XX_PM_LOCK_RX)) {
pm_policy_state_lock_put(PM_STATE_STANDBY, PM_ALL_SUBSTATES);
}
#endif
UARTIntDisable(config->reg, UART_INT_RX);
}
static int uart_cc13xx_cc26xx_irq_tx_complete(const struct device *dev)
{
const struct uart_cc13xx_cc26xx_config *config = dev->config;
return UARTBusy(config->reg) ? 0 : 1;
}
static int uart_cc13xx_cc26xx_irq_rx_ready(const struct device *dev)
{
const struct uart_cc13xx_cc26xx_config *config = dev->config;
return UARTCharsAvail(config->reg) ? 1 : 0;
}
static void uart_cc13xx_cc26xx_irq_err_enable(const struct device *dev)
{
const struct uart_cc13xx_cc26xx_config *config = dev->config;
return UARTIntEnable(config->reg,
UART_INT_OE | UART_INT_BE | UART_INT_PE |
UART_INT_FE);
}
static void uart_cc13xx_cc26xx_irq_err_disable(const struct device *dev)
{
const struct uart_cc13xx_cc26xx_config *config = dev->config;
return UARTIntDisable(config->reg,
UART_INT_OE | UART_INT_BE | UART_INT_PE |
UART_INT_FE);
}
static int uart_cc13xx_cc26xx_irq_is_pending(const struct device *dev)
{
const struct uart_cc13xx_cc26xx_config *config = dev->config;
uint32_t status = UARTIntStatus(config->reg, true);
return status & (UART_INT_TX | UART_INT_RX) ? 1 : 0;
}
static int uart_cc13xx_cc26xx_irq_update(const struct device *dev)
{
ARG_UNUSED(dev);
return 1;
}
static void uart_cc13xx_cc26xx_irq_callback_set(const struct device *dev,
uart_irq_callback_user_data_t cb,
void *user_data)
{
struct uart_cc13xx_cc26xx_data *data = dev->data;
data->callback = cb;
data->user_data = user_data;
}
static void uart_cc13xx_cc26xx_isr(const struct device *dev)
{
struct uart_cc13xx_cc26xx_data *data = dev->data;
if (data->callback) {
data->callback(dev, data->user_data);
}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#ifdef CONFIG_PM
/*
* ======== postNotifyFxn ========
* Called by Power module when waking up the CPU from Standby, to support
* the case when PM is set but PM_DEVICE is
* not. The uart needs to be reconfigured afterwards unless Zephyr's device
* PM turned it off, in which case it'd be responsible for turning it back
* on and reconfiguring it.
*/
static int postNotifyFxn(unsigned int eventType, uintptr_t eventArg,
uintptr_t clientArg)
{
const struct device *dev = (const struct device *)clientArg;
const struct uart_cc13xx_cc26xx_config *config = dev->config;
struct uart_cc13xx_cc26xx_data *data = dev->data;
int ret = Power_NOTIFYDONE;
int16_t res_id;
/* Reconfigure the hardware if returning from standby */
if (eventType == PowerCC26XX_AWAKE_STANDBY) {
if (config->reg == DT_INST_REG_ADDR(0)) {
res_id = PowerCC26XX_PERIPH_UART0;
} else { /* DT_INST_REG_ADDR(1) */
res_id = PowerCC26X2_PERIPH_UART1;
}
if (Power_getDependencyCount(res_id) != 0) {
/*
* Reconfigure and enable UART only if not
* actively powered down
*/
if (uart_cc13xx_cc26xx_configure(dev,
&data->uart_config) != 0) {
ret = Power_NOTIFYERROR;
}
}
}
return (ret);
}
#endif
#ifdef CONFIG_PM_DEVICE
static int uart_cc13xx_cc26xx_pm_action(const struct device *dev,
enum pm_device_action action)
{
const struct uart_cc13xx_cc26xx_config *config = dev->config;
struct uart_cc13xx_cc26xx_data *data = dev->data;
int ret = 0;
switch (action) {
case PM_DEVICE_ACTION_RESUME:
if (config->reg == DT_INST_REG_ADDR(0)) {
Power_setDependency(PowerCC26XX_PERIPH_UART0);
} else {
Power_setDependency(PowerCC26X2_PERIPH_UART1);
}
/* Configure and enable UART */
ret = uart_cc13xx_cc26xx_configure(dev, &data->uart_config);
break;
case PM_DEVICE_ACTION_SUSPEND:
UARTDisable(config->reg);
/*
* Release power dependency - i.e. potentially power
* down serial domain.
*/
if (config->reg == DT_INST_REG_ADDR(0)) {
Power_releaseDependency(PowerCC26XX_PERIPH_UART0);
} else {
Power_releaseDependency(PowerCC26X2_PERIPH_UART1);
}
break;
default:
return -ENOTSUP;
}
return ret;
}
#endif /* CONFIG_PM_DEVICE */
static const struct uart_driver_api uart_cc13xx_cc26xx_driver_api = {
.poll_in = uart_cc13xx_cc26xx_poll_in,
.poll_out = uart_cc13xx_cc26xx_poll_out,
.err_check = uart_cc13xx_cc26xx_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
.configure = uart_cc13xx_cc26xx_configure,
.config_get = uart_cc13xx_cc26xx_config_get,
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = uart_cc13xx_cc26xx_fifo_fill,
.fifo_read = uart_cc13xx_cc26xx_fifo_read,
.irq_tx_enable = uart_cc13xx_cc26xx_irq_tx_enable,
.irq_tx_disable = uart_cc13xx_cc26xx_irq_tx_disable,
.irq_tx_ready = uart_cc13xx_cc26xx_irq_tx_ready,
.irq_rx_enable = uart_cc13xx_cc26xx_irq_rx_enable,
.irq_rx_disable = uart_cc13xx_cc26xx_irq_rx_disable,
.irq_tx_complete = uart_cc13xx_cc26xx_irq_tx_complete,
.irq_rx_ready = uart_cc13xx_cc26xx_irq_rx_ready,
.irq_err_enable = uart_cc13xx_cc26xx_irq_err_enable,
.irq_err_disable = uart_cc13xx_cc26xx_irq_err_disable,
.irq_is_pending = uart_cc13xx_cc26xx_irq_is_pending,
.irq_update = uart_cc13xx_cc26xx_irq_update,
.irq_callback_set = uart_cc13xx_cc26xx_irq_callback_set,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
};
#ifdef CONFIG_PM
#define UART_CC13XX_CC26XX_POWER_UART(n) \
do { \
struct uart_cc13xx_cc26xx_data *dev_data = dev->data; \
\
atomic_clear_bit(dev_data->pm_lock, UART_CC13XX_CC26XX_PM_LOCK_RX); \
atomic_clear_bit(dev_data->pm_lock, UART_CC13XX_CC26XX_PM_LOCK_TX); \
\
/* Set Power dependencies */ \
if (DT_INST_REG_ADDR(n) == 0x40001000) { \
Power_setDependency(PowerCC26XX_PERIPH_UART0); \
} else { \
Power_setDependency(PowerCC26X2_PERIPH_UART1); \
} \
\
/* Register notification function */ \
Power_registerNotify(&dev_data->postNotify, \
PowerCC26XX_AWAKE_STANDBY, \
postNotifyFxn, (uintptr_t)dev); \
} while (false)
#else
#define UART_CC13XX_CC26XX_POWER_UART(n) \
do { \
uint32_t domain, periph; \
\
/* Enable UART power domain */ \
if (DT_INST_REG_ADDR(n) == 0x40001000) { \
domain = PRCM_DOMAIN_SERIAL; \
periph = PRCM_PERIPH_UART0; \
} else { \
domain = PRCM_DOMAIN_PERIPH; \
periph = PRCM_PERIPH_UART1; \
} \
PRCMPowerDomainOn(domain); \
\
/* Enable UART peripherals */ \
PRCMPeripheralRunEnable(periph); \
PRCMPeripheralSleepEnable(periph); \
\
/* Load PRCM settings */ \
PRCMLoadSet(); \
while (!PRCMLoadGet()) { \
continue; \
} \
\
/* UART should not be accessed until power domain is on. */ \
while (PRCMPowerDomainsAllOn(domain) != \
PRCM_DOMAIN_POWER_ON) { \
continue; \
} \
} while (false)
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#define UART_CC13XX_CC26XX_IRQ_CFG(n) \
do { \
const struct uart_cc13xx_cc26xx_config *config = \
dev->config; \
\
UARTIntClear(config->reg, UART_INT_RX); \
\
IRQ_CONNECT(DT_INST_IRQN(n), \
DT_INST_IRQ(n, priority), \
uart_cc13xx_cc26xx_isr, \
DEVICE_DT_INST_GET(n), \
0); \
irq_enable(DT_INST_IRQN(n)); \
/* Causes an initial TX ready INT when TX INT enabled */\
UARTCharPutNonBlocking(config->reg, '\0'); \
} while (false)
#define UART_CC13XX_CC26XX_INT_FIELDS \
.callback = NULL, \
.user_data = NULL,
#else
#define UART_CC13XX_CC26XX_IRQ_CFG(n)
#define UART_CC13XX_CC26XX_INT_FIELDS
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#define UART_CC13XX_CC26XX_DEVICE_DEFINE(n) \
PM_DEVICE_DT_INST_DEFINE(n, uart_cc13xx_cc26xx_pm_action); \
\
DEVICE_DT_INST_DEFINE(n, \
uart_cc13xx_cc26xx_init_##n, \
PM_DEVICE_DT_INST_GET(n), \
&uart_cc13xx_cc26xx_data_##n, &uart_cc13xx_cc26xx_config_##n,\
PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY, \
&uart_cc13xx_cc26xx_driver_api)
#define UART_CC13XX_CC26XX_INIT_FUNC(n) \
static int uart_cc13xx_cc26xx_init_##n(const struct device *dev) \
{ \
struct uart_cc13xx_cc26xx_data *data = dev->data; \
int ret; \
\
UART_CC13XX_CC26XX_POWER_UART(n); \
\
ret = pinctrl_apply_state(data->pcfg, PINCTRL_STATE_DEFAULT); \
if (ret < 0) { \
return ret; \
} \
\
/* Configure and enable UART */ \
ret = uart_cc13xx_cc26xx_configure(dev, &data->uart_config);\
\
/* Enable interrupts */ \
UART_CC13XX_CC26XX_IRQ_CFG(n); \
\
return ret; \
}
#define UART_CC13XX_CC26XX_INIT(n) \
PINCTRL_DT_INST_DEFINE(n); \
UART_CC13XX_CC26XX_INIT_FUNC(n); \
\
static const struct uart_cc13xx_cc26xx_config \
uart_cc13xx_cc26xx_config_##n = { \
.reg = DT_INST_REG_ADDR(n), \
.sys_clk_freq = DT_INST_PROP_BY_PHANDLE(n, clocks, \
clock_frequency) \
}; \
\
static struct uart_cc13xx_cc26xx_data \
uart_cc13xx_cc26xx_data_##n = { \
.uart_config = { \
.baudrate = DT_INST_PROP(n, current_speed), \
.parity = UART_CFG_PARITY_NONE, \
.stop_bits = UART_CFG_STOP_BITS_1, \
.data_bits = UART_CFG_DATA_BITS_8, \
.flow_ctrl = UART_CFG_FLOW_CTRL_NONE, \
}, \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
UART_CC13XX_CC26XX_INT_FIELDS \
}; \
\
UART_CC13XX_CC26XX_DEVICE_DEFINE(n);
DT_INST_FOREACH_STATUS_OKAY(UART_CC13XX_CC26XX_INIT)