zephyr/drivers/gpio/gpio_mchp_xec_v2.c

429 lines
12 KiB
C

/*
* Copyright (c) 2019 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT microchip_xec_gpio_v2
#include <errno.h>
#include <device.h>
#include <drivers/gpio.h>
#include <dt-bindings/pinctrl/mchp-xec-pinctrl.h>
#include <soc.h>
#include <arch/arm/aarch32/cortex_m/cmsis.h>
#include "gpio_utils.h"
#define XEC_GPIO_EDGE_DLY_COUNT 4
static const uint32_t valid_ctrl_masks[NUM_MCHP_GPIO_PORTS] = {
(MCHP_GPIO_PORT_A_BITMAP),
(MCHP_GPIO_PORT_B_BITMAP),
(MCHP_GPIO_PORT_C_BITMAP),
(MCHP_GPIO_PORT_D_BITMAP),
(MCHP_GPIO_PORT_E_BITMAP),
(MCHP_GPIO_PORT_F_BITMAP),
};
struct gpio_xec_data {
/* gpio_driver_data needs to be first */
struct gpio_driver_data common;
/* port ISR callback routine address */
sys_slist_t callbacks;
};
struct gpio_xec_config {
/* gpio_driver_config needs to be first */
struct gpio_driver_config common;
uintptr_t pcr1_base;
uintptr_t parin_addr;
uintptr_t parout_addr;
uint8_t girq_id;
uint8_t port_num;
uint32_t flags;
};
/* Each GPIO pin 32-bit control register located consecutively in memory */
static inline uintptr_t pin_ctrl_addr(const struct device *dev, gpio_pin_t pin)
{
const struct gpio_xec_config *config = dev->config;
return config->pcr1_base + ((uintptr_t)pin * 4u);
}
/* GPIO Parallel input is a single 32-bit register per bank of 32 pins */
static inline uintptr_t pin_parin_addr(const struct device *dev)
{
const struct gpio_xec_config *config = dev->config;
return config->parin_addr;
}
/* GPIO Parallel output is a single 32-bit register per bank of 32 pins */
static inline uintptr_t pin_parout_addr(const struct device *dev)
{
const struct gpio_xec_config *config = dev->config;
return config->parout_addr;
}
/*
* Use Zephyr system API to implement
* reg32(addr) = (reg32(addr) & ~mask) | (val & mask)
*/
static inline void xec_mask_write32(uintptr_t addr, uint32_t mask, uint32_t val)
{
uint32_t r = (sys_read32(addr) & ~mask) | (val & mask);
sys_write32(r, addr);
}
/*
* notes: The GPIO parallel output bits are read-only until the
* Alternate-Output-Disable (AOD) bit is set in the pin's control
* register. To preload a parallel output value to prevent certain
* classes of glitching for output pins we must:
* Set GPIO control AOD=1 with the pin direction set to input.
* Program the new pin value in the respective GPIO parallel output
* register.
* Program other GPIO control bits except direction.
* Last step set the GPIO control register direction bit to output.
*/
static int gpio_xec_configure(const struct device *dev,
gpio_pin_t pin, gpio_flags_t flags)
{
const struct gpio_xec_config *config = dev->config;
uintptr_t pcr1_addr = pin_ctrl_addr(dev, pin);
uintptr_t pout_addr = pin_parout_addr(dev);
uint32_t pcr1 = 0U;
uint32_t mask = 0U;
/* Validate pin number range in terms of current port */
if ((valid_ctrl_masks[config->port_num] & BIT(pin)) == 0U) {
return -EINVAL;
}
/* Don't support "open source" mode */
if (((flags & GPIO_SINGLE_ENDED) != 0U) &&
((flags & GPIO_LINE_OPEN_DRAIN) == 0U)) {
return -ENOTSUP;
}
/* The flags contain options that require touching registers in the
* PCRs for a given GPIO. There are no GPIO modules in Microchip SOCs!
* Keep direction as input until last.
* Clear input pad disable allowing input pad to operate.
* Clear Power gate to allow pads to operate.
*/
mask |= MCHP_GPIO_CTRL_DIR_MASK;
mask |= MCHP_GPIO_CTRL_INPAD_DIS_MASK;
mask |= MCHP_GPIO_CTRL_PWRG_MASK;
pcr1 |= MCHP_GPIO_CTRL_DIR_INPUT;
/* Figure out the pullup/pulldown configuration and keep it in the
* pcr1 variable
*/
mask |= MCHP_GPIO_CTRL_PUD_MASK;
if ((flags & GPIO_PULL_UP) != 0U) {
/* Enable the pull and select the pullup resistor. */
pcr1 |= MCHP_GPIO_CTRL_PUD_PU;
} else if ((flags & GPIO_PULL_DOWN) != 0U) {
/* Enable the pull and select the pulldown resistor */
pcr1 |= MCHP_GPIO_CTRL_PUD_PD;
}
/* Push-pull or open drain */
mask |= MCHP_GPIO_CTRL_BUFT_MASK;
if ((flags & GPIO_OPEN_DRAIN) != 0U) {
/* Open drain */
pcr1 |= MCHP_GPIO_CTRL_BUFT_OPENDRAIN;
} else {
/* Push-pull */
pcr1 |= MCHP_GPIO_CTRL_BUFT_PUSHPULL;
}
/* Use GPIO output register to control pin output, instead of
* using the control register (=> alternate output disable).
*/
mask |= MCHP_GPIO_CTRL_AOD_MASK;
pcr1 |= MCHP_GPIO_CTRL_AOD_DIS;
/* Make sure disconnected on first control register write */
if (flags == GPIO_DISCONNECTED) {
pcr1 |= MCHP_GPIO_CTRL_PWRG_OFF;
}
/* Now write contents of pcr1 variable to the PCR1 register that
* corresponds to the GPIO being configured.
* AOD is 1 and direction is input. HW will allow use to set the
* GPIO parallel output bit for this pin and with the pin direction
* as input no glitch will occur.
*/
xec_mask_write32(pcr1_addr, mask, pcr1);
if ((flags & GPIO_OUTPUT) != 0U) {
if ((flags & GPIO_OUTPUT_INIT_HIGH) != 0U) {
sys_set_bit(pout_addr, pin);
} else if ((flags & GPIO_OUTPUT_INIT_LOW) != 0U) {
sys_clear_bit(pout_addr, pin);
}
mask = MCHP_GPIO_CTRL_DIR_MASK;
pcr1 = MCHP_GPIO_CTRL_DIR_OUTPUT;
xec_mask_write32(pcr1_addr, mask, pcr1);
}
return 0;
}
static int gen_gpio_ctrl_icfg(enum gpio_int_mode mode, enum gpio_int_trig trig,
uint32_t *pin_ctr1)
{
if (!pin_ctr1) {
return -EINVAL;
}
if (mode == GPIO_INT_MODE_DISABLED) {
*pin_ctr1 = MCHP_GPIO_CTRL_IDET_DISABLE;
} else {
if (mode == GPIO_INT_MODE_LEVEL) {
if (trig == GPIO_INT_TRIG_HIGH) {
*pin_ctr1 = MCHP_GPIO_CTRL_IDET_LVL_HI;
} else {
*pin_ctr1 = MCHP_GPIO_CTRL_IDET_LVL_LO;
}
} else {
switch (trig) {
case GPIO_INT_TRIG_LOW:
*pin_ctr1 = MCHP_GPIO_CTRL_IDET_FEDGE;
break;
case GPIO_INT_TRIG_HIGH:
*pin_ctr1 = MCHP_GPIO_CTRL_IDET_REDGE;
break;
case GPIO_INT_TRIG_BOTH:
*pin_ctr1 = MCHP_GPIO_CTRL_IDET_BEDGE;
break;
default:
return -EINVAL;
}
}
}
return 0;
}
static void gpio_xec_intr_en(gpio_pin_t pin, enum gpio_int_mode mode,
uint8_t girq_id)
{
if (mode != GPIO_INT_MODE_DISABLED) {
/* Enable interrupt to propagate via its GIRQ to the NVIC */
mchp_soc_ecia_girq_src_en(girq_id, pin);
}
}
static int gpio_xec_pin_interrupt_configure(const struct device *dev,
gpio_pin_t pin,
enum gpio_int_mode mode,
enum gpio_int_trig trig)
{
const struct gpio_xec_config *config = dev->config;
uintptr_t pcr1_addr = pin_ctrl_addr(dev, pin);
uint32_t pcr1 = 0u;
uint32_t pcr1_req = 0u;
/* Validate pin number range in terms of current port */
if ((valid_ctrl_masks[config->port_num] & BIT(pin)) == 0U) {
return -EINVAL;
}
/* Check if GPIO port supports interrupts */
if ((mode != GPIO_INT_MODE_DISABLED) &&
((config->flags & GPIO_INT_ENABLE) == 0)) {
return -ENOTSUP;
}
pcr1_req = MCHP_GPIO_CTRL_IDET_DISABLE;
if (gen_gpio_ctrl_icfg(mode, trig, &pcr1_req)) {
return -EINVAL;
}
/* Disable interrupt in the EC aggregator */
mchp_soc_ecia_girq_src_dis(config->girq_id, pin);
/* pin configuration matches requested detection mode? */
pcr1 = sys_read32(pcr1_addr);
if ((pcr1 & MCHP_GPIO_CTRL_IDET_MASK) == pcr1_req) {
gpio_xec_intr_en(pin, mode, config->girq_id);
return 0;
}
pcr1 &= ~MCHP_GPIO_CTRL_IDET_MASK;
if (mode == GPIO_INT_MODE_LEVEL) {
if (trig == GPIO_INT_TRIG_HIGH) {
pcr1 |= MCHP_GPIO_CTRL_IDET_LVL_HI;
} else {
pcr1 |= MCHP_GPIO_CTRL_IDET_LVL_LO;
}
} else if (mode == GPIO_INT_MODE_EDGE) {
if (trig == GPIO_INT_TRIG_LOW) {
pcr1 |= MCHP_GPIO_CTRL_IDET_FEDGE;
} else if (trig == GPIO_INT_TRIG_HIGH) {
pcr1 |= MCHP_GPIO_CTRL_IDET_REDGE;
} else if (trig == GPIO_INT_TRIG_BOTH) {
pcr1 |= MCHP_GPIO_CTRL_IDET_BEDGE;
}
} else {
pcr1 |= MCHP_GPIO_CTRL_IDET_DISABLE;
}
sys_write32(pcr1, pcr1_addr);
/* delay for HW to synchronize after it ungates its clock */
for (int i = 0; i < XEC_GPIO_EDGE_DLY_COUNT; i++) {
sys_read32(pcr1_addr);
}
mchp_soc_ecia_girq_src_clr(config->girq_id, pin);
gpio_xec_intr_en(pin, mode, config->girq_id);
return 0;
}
static int gpio_xec_port_set_masked_raw(const struct device *dev,
uint32_t mask,
uint32_t value)
{
uintptr_t pout_addr = pin_parout_addr(dev);
xec_mask_write32(pout_addr, mask, value);
return 0;
}
static int gpio_xec_port_set_bits_raw(const struct device *dev, uint32_t mask)
{
uintptr_t pout_addr = pin_parout_addr(dev);
sys_write32(sys_read32(pout_addr) | mask, pout_addr);
return 0;
}
static int gpio_xec_port_clear_bits_raw(const struct device *dev,
uint32_t mask)
{
uintptr_t pout_addr = pin_parout_addr(dev);
sys_write32(sys_read32(pout_addr) & ~mask, pout_addr);
return 0;
}
static int gpio_xec_port_toggle_bits(const struct device *dev, uint32_t mask)
{
uintptr_t pout_addr = pin_parout_addr(dev);
sys_write32(sys_read32(pout_addr) ^ mask, pout_addr);
return 0;
}
static int gpio_xec_port_get_raw(const struct device *dev, uint32_t *value)
{
uintptr_t pin_addr = pin_parin_addr(dev);
*value = sys_read32(pin_addr);
return 0;
}
static int gpio_xec_manage_callback(const struct device *dev,
struct gpio_callback *callback, bool set)
{
struct gpio_xec_data *data = dev->data;
gpio_manage_callback(&data->callbacks, callback, set);
return 0;
}
static void gpio_gpio_xec_port_isr(const struct device *dev)
{
const struct gpio_xec_config *config = dev->config;
struct gpio_xec_data *data = dev->data;
uint32_t girq_result;
/* Figure out which interrupts have been triggered from the EC
* aggregator result register
*/
girq_result = mchp_soc_ecia_girq_result(config->girq_id);
/* Clear source register in aggregator before firing callbacks */
mchp_soc_ecia_girq_src_clr_bitmap(config->girq_id, girq_result);
gpio_fire_callbacks(&data->callbacks, dev, girq_result);
}
/* GPIO driver official API table */
static const struct gpio_driver_api gpio_xec_driver_api = {
.pin_configure = gpio_xec_configure,
.port_get_raw = gpio_xec_port_get_raw,
.port_set_masked_raw = gpio_xec_port_set_masked_raw,
.port_set_bits_raw = gpio_xec_port_set_bits_raw,
.port_clear_bits_raw = gpio_xec_port_clear_bits_raw,
.port_toggle_bits = gpio_xec_port_toggle_bits,
.pin_interrupt_configure = gpio_xec_pin_interrupt_configure,
.manage_callback = gpio_xec_manage_callback,
};
#define XEC_GPIO_PORT_FLAGS(n) \
((DT_INST_IRQ_HAS_CELL(n, irq)) ? GPIO_INT_ENABLE : 0)
#define XEC_GPIO_PORT(n) \
static int gpio_xec_port_init_##n(const struct device *dev) \
{ \
if (!(DT_INST_IRQ_HAS_CELL(n, irq))) { \
return 0; \
} \
\
const struct gpio_xec_config *config = dev->config; \
\
mchp_soc_ecia_girq_aggr_en(config->girq_id, 1); \
\
IRQ_CONNECT(DT_INST_IRQN(n), \
DT_INST_IRQ(n, priority), \
gpio_gpio_xec_port_isr, \
DEVICE_DT_INST_GET(n), 0U); \
\
irq_enable(DT_INST_IRQN(n)); \
\
return 0; \
} \
\
static struct gpio_xec_data gpio_xec_port_data_##n; \
\
static const struct gpio_xec_config xec_gpio_config_##n = { \
.common = { \
.port_pin_mask = \
GPIO_PORT_PIN_MASK_FROM_DT_INST(n), \
}, \
.pcr1_base = (uintptr_t)DT_INST_REG_ADDR_BY_IDX(n, 0), \
.parin_addr = (uintptr_t)DT_INST_REG_ADDR_BY_IDX(n, 1), \
.parout_addr = (uintptr_t)DT_INST_REG_ADDR_BY_IDX(n, 2),\
.port_num = DT_INST_PROP(n, port_id), \
.girq_id = DT_INST_PROP_OR(n, girq_id, 0), \
.flags = XEC_GPIO_PORT_FLAGS(n), \
}; \
\
DEVICE_DT_INST_DEFINE(n, gpio_xec_port_init_##n, NULL, \
&gpio_xec_port_data_##n, &xec_gpio_config_##n, \
PRE_KERNEL_1, CONFIG_GPIO_INIT_PRIORITY, \
&gpio_xec_driver_api);
DT_INST_FOREACH_STATUS_OKAY(XEC_GPIO_PORT)