zephyr/subsys/net/ip/net_shell.c

2571 lines
62 KiB
C

/** @file
* @brief Network shell module
*
* Provide some networking shell commands that can be useful to applications.
*/
/*
* Copyright (c) 2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr.h>
#include <stdlib.h>
#include <shell/shell.h>
#include <net/net_if.h>
#include <net/dns_resolve.h>
#include <misc/printk.h>
#include "route.h"
#include "icmpv6.h"
#include "icmpv4.h"
#include "connection.h"
#if defined(CONFIG_NET_TCP)
#include "tcp.h"
#endif
#if defined(CONFIG_NET_IPV6)
#include "ipv6.h"
#endif
#if defined(CONFIG_HTTP)
#include <net/http.h>
#endif
#if defined(CONFIG_NET_APP)
#include <net/net_app.h>
#endif
#if defined(CONFIG_NET_RPL)
#include "rpl.h"
#endif
#if defined(CONFIG_NET_ARP)
#include <net/arp.h>
#endif
#include "net_shell.h"
#include "net_stats.h"
/*
* Set NET_LOG_ENABLED in order to activate address printing functions
* in net_private.h
*/
#define NET_LOG_ENABLED 1
#include "net_private.h"
#define NET_SHELL_MODULE "net"
/* net_stack dedicated section limiters */
extern struct net_stack_info __net_stack_start[];
extern struct net_stack_info __net_stack_end[];
static inline const char *addrtype2str(enum net_addr_type addr_type)
{
switch (addr_type) {
case NET_ADDR_ANY:
return "<unknown type>";
case NET_ADDR_AUTOCONF:
return "autoconf";
case NET_ADDR_DHCP:
return "DHCP";
case NET_ADDR_MANUAL:
return "manual";
}
return "<invalid type>";
}
static inline const char *addrstate2str(enum net_addr_state addr_state)
{
switch (addr_state) {
case NET_ADDR_ANY_STATE:
return "<unknown state>";
case NET_ADDR_TENTATIVE:
return "tentative";
case NET_ADDR_PREFERRED:
return "preferred";
case NET_ADDR_DEPRECATED:
return "deprecated";
}
return "<invalid state>";
}
static const char *iface2str(struct net_if *iface, const char **extra)
{
#ifdef CONFIG_NET_L2_IEEE802154
if (iface->l2 == &NET_L2_GET_NAME(IEEE802154)) {
if (extra) {
*extra = "=============";
}
return "IEEE 802.15.4";
}
#endif
#ifdef CONFIG_NET_L2_ETHERNET
if (iface->l2 == &NET_L2_GET_NAME(ETHERNET)) {
if (extra) {
*extra = "========";
}
return "Ethernet";
}
#endif
#ifdef CONFIG_NET_L2_DUMMY
if (iface->l2 == &NET_L2_GET_NAME(DUMMY)) {
if (extra) {
*extra = "=====";
}
return "Dummy";
}
#endif
#ifdef CONFIG_NET_L2_BT
if (iface->l2 == &NET_L2_GET_NAME(BLUETOOTH)) {
if (extra) {
*extra = "=========";
}
return "Bluetooth";
}
#endif
#ifdef CONFIG_NET_OFFLOAD
if (iface->l2 == &NET_L2_GET_NAME(OFFLOAD_IP)) {
if (extra) {
*extra = "==========";
}
return "IP Offload";
}
#endif
if (extra) {
*extra = "==============";
}
return "<unknown type>";
}
static void iface_cb(struct net_if *iface, void *user_data)
{
#if defined(CONFIG_NET_IPV6)
struct net_if_ipv6_prefix *prefix;
struct net_if_router *router;
#endif
struct net_if_addr *unicast;
struct net_if_mcast_addr *mcast;
const char *extra;
int i, count;
ARG_UNUSED(user_data);
printk("\nInterface %p (%s)\n", iface, iface2str(iface, &extra));
printk("=======================%s\n", extra);
if (!net_if_is_up(iface)) {
printk("Interface is down.\n");
return;
}
printk("Link addr : %s\n", net_sprint_ll_addr(iface->link_addr.addr,
iface->link_addr.len));
printk("MTU : %d\n", iface->mtu);
#if defined(CONFIG_NET_IPV6)
count = 0;
printk("IPv6 unicast addresses (max %d):\n", NET_IF_MAX_IPV6_ADDR);
for (i = 0; i < NET_IF_MAX_IPV6_ADDR; i++) {
unicast = &iface->ipv6.unicast[i];
if (!unicast->is_used) {
continue;
}
printk("\t%s %s %s%s\n",
net_sprint_ipv6_addr(&unicast->address.in6_addr),
addrtype2str(unicast->addr_type),
addrstate2str(unicast->addr_state),
unicast->is_infinite ? " infinite" : "");
count++;
}
if (count == 0) {
printk("\t<none>\n");
}
count = 0;
printk("IPv6 multicast addresses (max %d):\n", NET_IF_MAX_IPV6_MADDR);
for (i = 0; i < NET_IF_MAX_IPV6_MADDR; i++) {
mcast = &iface->ipv6.mcast[i];
if (!mcast->is_used) {
continue;
}
printk("\t%s\n",
net_sprint_ipv6_addr(&mcast->address.in6_addr));
count++;
}
if (count == 0) {
printk("\t<none>\n");
}
count = 0;
printk("IPv6 prefixes (max %d):\n", NET_IF_MAX_IPV6_PREFIX);
for (i = 0; i < NET_IF_MAX_IPV6_PREFIX; i++) {
prefix = &iface->ipv6.prefix[i];
if (!prefix->is_used) {
continue;
}
printk("\t%s/%d%s\n",
net_sprint_ipv6_addr(&prefix->prefix),
prefix->len,
prefix->is_infinite ? " infinite" : "");
count++;
}
if (count == 0) {
printk("\t<none>\n");
}
router = net_if_ipv6_router_find_default(iface, NULL);
if (router) {
printk("IPv6 default router :\n");
printk("\t%s%s\n",
net_sprint_ipv6_addr(&router->address.in6_addr),
router->is_infinite ? " infinite" : "");
}
printk("IPv6 hop limit : %d\n", iface->ipv6.hop_limit);
printk("IPv6 base reachable time : %d\n",
iface->ipv6.base_reachable_time);
printk("IPv6 reachable time : %d\n", iface->ipv6.reachable_time);
printk("IPv6 retransmit timer : %d\n", iface->ipv6.retrans_timer);
#endif /* CONFIG_NET_IPV6 */
#if defined(CONFIG_NET_IPV4)
/* No need to print IPv4 information for interface that does not
* support that protocol.
*/
if (
#if defined(CONFIG_NET_L2_IEEE802154)
(iface->l2 == &NET_L2_GET_NAME(IEEE802154)) ||
#endif
#if defined(CONFIG_NET_L2_BT)
(iface->l2 == &NET_L2_GET_NAME(BLUETOOTH)) ||
#endif
0) {
printk("IPv4 not supported for this interface.\n");
return;
}
count = 0;
printk("IPv4 unicast addresses (max %d):\n", NET_IF_MAX_IPV4_ADDR);
for (i = 0; i < NET_IF_MAX_IPV4_ADDR; i++) {
unicast = &iface->ipv4.unicast[i];
if (!unicast->is_used) {
continue;
}
printk("\t%s %s %s%s\n",
net_sprint_ipv4_addr(&unicast->address.in_addr),
addrtype2str(unicast->addr_type),
addrstate2str(unicast->addr_state),
unicast->is_infinite ? " infinite" : "");
count++;
}
if (count == 0) {
printk("\t<none>\n");
}
count = 0;
printk("IPv4 multicast addresses (max %d):\n", NET_IF_MAX_IPV4_MADDR);
for (i = 0; i < NET_IF_MAX_IPV4_MADDR; i++) {
mcast = &iface->ipv4.mcast[i];
if (!mcast->is_used) {
continue;
}
printk("\t%s\n",
net_sprint_ipv4_addr(&mcast->address.in_addr));
count++;
}
if (count == 0) {
printk("\t<none>\n");
}
printk("IPv4 gateway : %s\n",
net_sprint_ipv4_addr(&iface->ipv4.gw));
printk("IPv4 netmask : %s\n",
net_sprint_ipv4_addr(&iface->ipv4.netmask));
#endif /* CONFIG_NET_IPV4 */
#if defined(CONFIG_NET_DHCPV4)
printk("DHCPv4 lease time : %u\n", iface->dhcpv4.lease_time);
printk("DHCPv4 renew time : %u\n", iface->dhcpv4.renewal_time);
printk("DHCPv4 server : %s\n",
net_sprint_ipv4_addr(&iface->dhcpv4.server_id));
printk("DHCPv4 requested : %s\n",
net_sprint_ipv4_addr(&iface->dhcpv4.requested_ip));
printk("DHCPv4 state : %s\n",
net_dhcpv4_state_name(iface->dhcpv4.state));
printk("DHCPv4 attempts : %d\n", iface->dhcpv4.attempts);
#endif /* CONFIG_NET_DHCPV4 */
}
#if defined(CONFIG_NET_ROUTE)
static void route_cb(struct net_route_entry *entry, void *user_data)
{
struct net_if *iface = user_data;
struct net_route_nexthop *nexthop_route;
int count;
if (entry->iface != iface) {
return;
}
printk("IPv6 prefix : %s/%d\n",
net_sprint_ipv6_addr(&entry->addr),
entry->prefix_len);
count = 0;
SYS_SLIST_FOR_EACH_CONTAINER(&entry->nexthop, nexthop_route, node) {
struct net_linkaddr_storage *lladdr;
if (!nexthop_route->nbr) {
continue;
}
printk("\tneighbor : %p\t", nexthop_route->nbr);
if (nexthop_route->nbr->idx == NET_NBR_LLADDR_UNKNOWN) {
printk("addr : <unknown>\n");
} else {
lladdr = net_nbr_get_lladdr(nexthop_route->nbr->idx);
printk("addr : %s\n",
net_sprint_ll_addr(lladdr->addr,
lladdr->len));
}
count++;
}
if (count == 0) {
printk("\t<none>\n");
}
}
static void iface_per_route_cb(struct net_if *iface, void *user_data)
{
const char *extra;
ARG_UNUSED(user_data);
printk("\nIPv6 routes for interface %p (%s)\n", iface,
iface2str(iface, &extra));
printk("=======================================%s\n", extra);
net_route_foreach(route_cb, iface);
}
#endif /* CONFIG_NET_ROUTE */
#if defined(CONFIG_NET_ROUTE_MCAST)
static void route_mcast_cb(struct net_route_entry_mcast *entry,
void *user_data)
{
struct net_if *iface = user_data;
const char *extra;
if (entry->iface != iface) {
return;
}
printk("IPv6 multicast route %p for interface %p (%s)\n", entry,
iface, iface2str(iface, &extra));
printk("==========================================================="
"%s\n", extra);
printk("IPv6 group : %s\n", net_sprint_ipv6_addr(&entry->group));
printk("Lifetime : %u\n", entry->lifetime);
}
static void iface_per_mcast_route_cb(struct net_if *iface, void *user_data)
{
net_route_mcast_foreach(route_mcast_cb, NULL, iface);
}
#endif /* CONFIG_NET_ROUTE_MCAST */
#if defined(CONFIG_NET_STATISTICS)
static inline void net_shell_print_statistics(void)
{
#if defined(CONFIG_NET_IPV6)
printk("IPv6 recv %d\tsent\t%d\tdrop\t%d\tforwarded\t%d\n",
GET_STAT(ipv6.recv),
GET_STAT(ipv6.sent),
GET_STAT(ipv6.drop),
GET_STAT(ipv6.forwarded));
#if defined(CONFIG_NET_IPV6_ND)
printk("IPv6 ND recv %d\tsent\t%d\tdrop\t%d\n",
GET_STAT(ipv6_nd.recv),
GET_STAT(ipv6_nd.sent),
GET_STAT(ipv6_nd.drop));
#endif /* CONFIG_NET_IPV6_ND */
#if defined(CONFIG_NET_STATISTICS_MLD)
printk("IPv6 MLD recv %d\tsent\t%d\tdrop\t%d\n",
GET_STAT(ipv6_mld.recv),
GET_STAT(ipv6_mld.sent),
GET_STAT(ipv6_mld.drop));
#endif /* CONFIG_NET_STATISTICS_MLD */
#endif /* CONFIG_NET_IPV6 */
#if defined(CONFIG_NET_IPV4)
printk("IPv4 recv %d\tsent\t%d\tdrop\t%d\tforwarded\t%d\n",
GET_STAT(ipv4.recv),
GET_STAT(ipv4.sent),
GET_STAT(ipv4.drop),
GET_STAT(ipv4.forwarded));
#endif /* CONFIG_NET_IPV4 */
printk("IP vhlerr %d\thblener\t%d\tlblener\t%d\n",
GET_STAT(ip_errors.vhlerr),
GET_STAT(ip_errors.hblenerr),
GET_STAT(ip_errors.lblenerr));
printk("IP fragerr %d\tchkerr\t%d\tprotoer\t%d\n",
GET_STAT(ip_errors.fragerr),
GET_STAT(ip_errors.chkerr),
GET_STAT(ip_errors.protoerr));
printk("ICMP recv %d\tsent\t%d\tdrop\t%d\n",
GET_STAT(icmp.recv),
GET_STAT(icmp.sent),
GET_STAT(icmp.drop));
printk("ICMP typeer %d\tchkerr\t%d\n",
GET_STAT(icmp.typeerr),
GET_STAT(icmp.chkerr));
#if defined(CONFIG_NET_UDP)
printk("UDP recv %d\tsent\t%d\tdrop\t%d\n",
GET_STAT(udp.recv),
GET_STAT(udp.sent),
GET_STAT(udp.drop));
printk("UDP chkerr %d\n",
GET_STAT(udp.chkerr));
#endif
#if defined(CONFIG_NET_STATISTICS_TCP)
printk("TCP bytes recv %u\tsent\t%d\n",
GET_STAT(tcp.bytes.received),
GET_STAT(tcp.bytes.sent));
printk("TCP seg recv %d\tsent\t%d\tdrop\t%d\n",
GET_STAT(tcp.recv),
GET_STAT(tcp.sent),
GET_STAT(tcp.drop));
printk("TCP seg resent %d\tchkerr\t%d\tackerr\t%d\n",
GET_STAT(tcp.resent),
GET_STAT(tcp.chkerr),
GET_STAT(tcp.ackerr));
printk("TCP seg rsterr %d\trst\t%d\tre-xmit\t%d\n",
GET_STAT(tcp.rsterr),
GET_STAT(tcp.rst),
GET_STAT(tcp.rexmit));
printk("TCP conn drop %d\tconnrst\t%d\n",
GET_STAT(tcp.conndrop),
GET_STAT(tcp.connrst));
#endif
#if defined(CONFIG_NET_STATISTICS_RPL)
printk("RPL DIS recv %d\tsent\t%d\tdrop\t%d\n",
GET_STAT(rpl.dis.recv),
GET_STAT(rpl.dis.sent),
GET_STAT(rpl.dis.drop));
printk("RPL DIO recv %d\tsent\t%d\tdrop\t%d\n",
GET_STAT(rpl.dio.recv),
GET_STAT(rpl.dio.sent),
GET_STAT(rpl.dio.drop));
printk("RPL DAO recv %d\tsent\t%d\tdrop\t%d\tforwarded\t%d\n",
GET_STAT(rpl.dao.recv),
GET_STAT(rpl.dao.sent),
GET_STAT(rpl.dao.drop),
GET_STAT(rpl.dao.forwarded));
printk("RPL DAOACK rcv %d\tsent\t%d\tdrop\t%d\n",
GET_STAT(rpl.dao_ack.recv),
GET_STAT(rpl.dao_ack.sent),
GET_STAT(rpl.dao_ack.drop));
printk("RPL overflows %d\tl-repairs\t%d\tg-repairs\t%d\n",
GET_STAT(rpl.mem_overflows),
GET_STAT(rpl.local_repairs),
GET_STAT(rpl.global_repairs));
printk("RPL malformed %d\tresets \t%d\tp-switch\t%d\n",
GET_STAT(rpl.malformed_msgs),
GET_STAT(rpl.resets),
GET_STAT(rpl.parent_switch));
printk("RPL f-errors %d\tl-errors\t%d\tl-warnings\t%d\n",
GET_STAT(rpl.forward_errors),
GET_STAT(rpl.loop_errors),
GET_STAT(rpl.loop_warnings));
printk("RPL r-repairs %d\n",
GET_STAT(rpl.root_repairs));
#endif
printk("Bytes received %u\n", GET_STAT(bytes.received));
printk("Bytes sent %u\n", GET_STAT(bytes.sent));
printk("Processing err %d\n", GET_STAT(processing_error));
}
#endif /* CONFIG_NET_STATISTICS */
static void get_addresses(struct net_context *context,
char addr_local[], int local_len,
char addr_remote[], int remote_len)
{
#if defined(CONFIG_NET_IPV6)
if (context->local.family == AF_INET6) {
snprintk(addr_local, local_len, "[%s]:%u",
net_sprint_ipv6_addr(
net_sin6_ptr(&context->local)->sin6_addr),
ntohs(net_sin6_ptr(&context->local)->sin6_port));
snprintk(addr_remote, remote_len, "[%s]:%u",
net_sprint_ipv6_addr(
&net_sin6(&context->remote)->sin6_addr),
ntohs(net_sin6(&context->remote)->sin6_port));
} else
#endif
#if defined(CONFIG_NET_IPV4)
if (context->local.family == AF_INET) {
snprintk(addr_local, local_len, "%s:%d",
net_sprint_ipv4_addr(
net_sin_ptr(&context->local)->sin_addr),
ntohs(net_sin_ptr(&context->local)->sin_port));
snprintk(addr_remote, remote_len, "%s:%d",
net_sprint_ipv4_addr(
&net_sin(&context->remote)->sin_addr),
ntohs(net_sin(&context->remote)->sin_port));
} else
#endif
if (context->local.family == AF_UNSPEC) {
snprintk(addr_local, local_len, "AF_UNSPEC");
} else {
snprintk(addr_local, local_len, "AF_UNK(%d)",
context->local.family);
}
}
static void context_cb(struct net_context *context, void *user_data)
{
#if defined(CONFIG_NET_IPV6) && !defined(CONFIG_NET_IPV4)
#define ADDR_LEN NET_IPV6_ADDR_LEN
#elif defined(CONFIG_NET_IPV4) && !defined(CONFIG_NET_IPV6)
#define ADDR_LEN NET_IPV4_ADDR_LEN
#else
#define ADDR_LEN NET_IPV6_ADDR_LEN
#endif
int *count = user_data;
/* +7 for []:port */
char addr_local[ADDR_LEN + 7];
char addr_remote[ADDR_LEN + 7] = "";
get_addresses(context, addr_local, sizeof(addr_local),
addr_remote, sizeof(addr_remote));
printk("[%2d] %p\t%p %c%c%c %16s\t%16s\n",
(*count) + 1, context,
net_context_get_iface(context),
net_context_get_family(context) == AF_INET6 ? '6' : '4',
net_context_get_type(context) == SOCK_DGRAM ? 'D' : 'S',
net_context_get_ip_proto(context) == IPPROTO_UDP ?
'U' : 'T',
addr_local, addr_remote);
(*count)++;
}
#if defined(CONFIG_NET_DEBUG_CONN)
static void conn_handler_cb(struct net_conn *conn, void *user_data)
{
#if defined(CONFIG_NET_IPV6) && !defined(CONFIG_NET_IPV4)
#define ADDR_LEN NET_IPV6_ADDR_LEN
#elif defined(CONFIG_NET_IPV4) && !defined(CONFIG_NET_IPV6)
#define ADDR_LEN NET_IPV4_ADDR_LEN
#else
#define ADDR_LEN NET_IPV6_ADDR_LEN
#endif
int *count = user_data;
/* +7 for []:port */
char addr_local[ADDR_LEN + 7];
char addr_remote[ADDR_LEN + 7] = "";
#if defined(CONFIG_NET_IPV6)
if (conn->local_addr.sa_family == AF_INET6) {
snprintk(addr_local, sizeof(addr_local), "[%s]:%u",
net_sprint_ipv6_addr(
&net_sin6(&conn->local_addr)->sin6_addr),
ntohs(net_sin6(&conn->local_addr)->sin6_port));
snprintk(addr_remote, sizeof(addr_remote), "[%s]:%u",
net_sprint_ipv6_addr(
&net_sin6(&conn->remote_addr)->sin6_addr),
ntohs(net_sin6(&conn->remote_addr)->sin6_port));
} else
#endif
#if defined(CONFIG_NET_IPV4)
if (conn->local_addr.sa_family == AF_INET) {
snprintk(addr_local, sizeof(addr_local), "%s:%d",
net_sprint_ipv4_addr(
&net_sin(&conn->local_addr)->sin_addr),
ntohs(net_sin(&conn->local_addr)->sin_port));
snprintk(addr_remote, sizeof(addr_remote), "%s:%d",
net_sprint_ipv4_addr(
&net_sin(&conn->remote_addr)->sin_addr),
ntohs(net_sin(&conn->remote_addr)->sin_port));
} else
#endif
if (conn->local_addr.sa_family == AF_UNSPEC) {
snprintk(addr_local, sizeof(addr_local), "AF_UNSPEC");
} else {
snprintk(addr_local, sizeof(addr_local), "AF_UNK(%d)",
conn->local_addr.sa_family);
}
printk("[%2d] %p %p\t%s\t%16s\t%16s\n",
(*count) + 1, conn, conn->cb, net_proto2str(conn->proto),
addr_local, addr_remote);
(*count)++;
}
#endif /* CONFIG_NET_DEBUG_CONN */
#if defined(CONFIG_NET_TCP)
static void tcp_cb(struct net_tcp *tcp, void *user_data)
{
int *count = user_data;
u16_t recv_mss = net_tcp_get_recv_mss(tcp);
printk("%p %5u %5u %10u %10u %5u %s\n",
tcp,
ntohs(net_sin6_ptr(&tcp->context->local)->sin6_port),
ntohs(net_sin6(&tcp->context->remote)->sin6_port),
tcp->send_seq, tcp->send_ack, recv_mss,
net_tcp_state_str(net_tcp_get_state(tcp)));
(*count)++;
}
#if defined(CONFIG_NET_DEBUG_TCP)
static void tcp_sent_list_cb(struct net_tcp *tcp, void *user_data)
{
int *printed = user_data;
struct net_pkt *pkt;
struct net_pkt *tmp;
if (sys_slist_is_empty(&tcp->sent_list)) {
return;
}
if (!*printed) {
printk("\nTCP packets waiting ACK:\n");
printk("TCP net_pkt[ref/totlen]->net_buf[ref/len]...\n");
}
printk("%p ", tcp);
SYS_SLIST_FOR_EACH_CONTAINER_SAFE(&tcp->sent_list, pkt, tmp,
sent_list) {
struct net_buf *frag = pkt->frags;
if (!*printed) {
printk("%p[%d/%zd]", pkt, pkt->ref,
net_pkt_get_len(pkt));
*printed = true;
} else {
printk(" %p[%d/%zd]", pkt, pkt->ref,
net_pkt_get_len(pkt));
}
if (frag) {
printk("->");
}
while (frag) {
printk("%p[%d/%d]", frag, frag->ref, frag->len);
frag = frag->frags;
if (frag) {
printk("->");
}
}
printk("\n");
}
*printed = true;
}
#endif /* CONFIG_NET_DEBUG_TCP */
#endif
#if defined(CONFIG_NET_IPV6_FRAGMENT)
static void ipv6_frag_cb(struct net_ipv6_reassembly *reass,
void *user_data)
{
int *count = user_data;
char src[ADDR_LEN];
int i;
if (!*count) {
printk("\nIPv6 reassembly Id Remain Src \tDst\n");
}
snprintk(src, ADDR_LEN, "%s", net_sprint_ipv6_addr(&reass->src));
printk("%p 0x%08x %5d %16s\t%16s\n",
reass, reass->id, k_delayed_work_remaining_get(&reass->timer),
src, net_sprint_ipv6_addr(&reass->dst));
for (i = 0; i < NET_IPV6_FRAGMENTS_MAX_PKT; i++) {
if (reass->pkt[i]) {
struct net_buf *frag = reass->pkt[i]->frags;
printk("[%d] pkt %p->", i, reass->pkt[i]);
while (frag) {
printk("%p", frag);
frag = frag->frags;
if (frag) {
printk("->");
}
}
printk("\n");
}
}
(*count)++;
}
#endif /* CONFIG_NET_IPV6_FRAGMENT */
#if defined(CONFIG_NET_DEBUG_NET_PKT)
static void allocs_cb(struct net_pkt *pkt,
struct net_buf *buf,
const char *func_alloc,
int line_alloc,
const char *func_free,
int line_free,
bool in_use,
void *user_data)
{
const char *str;
if (in_use) {
str = "used";
} else {
if (func_alloc) {
str = "free";
} else {
str = "avail";
}
}
if (buf) {
goto buf;
}
if (func_alloc) {
if (in_use) {
printk("%p/%d\t%5s\t%5s\t%s():%d\n", pkt, pkt->ref,
str, net_pkt_slab2str(pkt->slab), func_alloc,
line_alloc);
} else {
printk("%p\t%5s\t%5s\t%s():%d -> %s():%d\n", pkt,
str, net_pkt_slab2str(pkt->slab), func_alloc,
line_alloc, func_free, line_free);
}
}
return;
buf:
if (func_alloc) {
struct net_buf_pool *pool = net_buf_pool_get(buf->pool_id);
if (in_use) {
printk("%p/%d\t%5s\t%5s\t%s():%d\n", buf, buf->ref,
str, net_pkt_pool2str(pool), func_alloc,
line_alloc);
} else {
printk("%p\t%5s\t%5s\t%s():%d -> %s():%d\n", buf,
str, net_pkt_pool2str(pool), func_alloc,
line_alloc, func_free, line_free);
}
}
}
#endif /* CONFIG_NET_DEBUG_NET_PKT */
/* Put the actual shell commands after this */
int net_shell_cmd_allocs(int argc, char *argv[])
{
ARG_UNUSED(argc);
ARG_UNUSED(argv);
#if defined(CONFIG_NET_DEBUG_NET_PKT)
printk("Network memory allocations\n\n");
printk("memory\t\tStatus\tPool\tFunction alloc -> freed\n");
net_pkt_allocs_foreach(allocs_cb, NULL);
#else
printk("Enable CONFIG_NET_DEBUG_NET_PKT to see allocations.\n");
#endif /* CONFIG_NET_DEBUG_NET_PKT */
return 0;
}
#if defined(CONFIG_NET_DEBUG_APP) && \
(defined(CONFIG_NET_APP_SERVER) || defined(CONFIG_NET_APP_CLIENT))
#if defined(CONFIG_NET_APP_TLS) || defined(CONFIG_NET_APP_DTLS)
static void print_app_sec_info(struct net_app_ctx *ctx, const char *sec_type)
{
printk(" Security: %s Thread id: %p\n", sec_type, ctx->tls.tid);
#if defined(CONFIG_INIT_STACKS)
{
unsigned int pcnt, unused;
net_analyze_stack_get_values(
K_THREAD_STACK_BUFFER(ctx->tls.stack),
ctx->tls.stack_size,
&pcnt, &unused);
printk(" Stack: %p Size: %d bytes unused %u usage "
"%u/%d (%u %%)\n",
ctx->tls.stack, ctx->tls.stack_size,
unused, ctx->tls.stack_size - unused,
ctx->tls.stack_size, pcnt);
}
#endif /* CONFIG_INIT_STACKS */
if (ctx->tls.cert_host) {
printk(" Cert host: %s\n", ctx->tls.cert_host);
}
}
#endif /* CONFIG_NET_APP_TLS || CONFIG_NET_APP_DTLS */
static void net_app_cb(struct net_app_ctx *ctx, void *user_data)
{
int *count = user_data;
char *sec_type = "none";
char *app_type = "unknown";
char *proto = "unknown";
bool printed = false;
#if defined(CONFIG_NET_IPV6) && !defined(CONFIG_NET_IPV4)
#define ADDR_LEN NET_IPV6_ADDR_LEN
#elif defined(CONFIG_NET_IPV4) && !defined(CONFIG_NET_IPV6)
#define ADDR_LEN NET_IPV4_ADDR_LEN
#else
#define ADDR_LEN NET_IPV6_ADDR_LEN
#endif
/* +7 for []:port */
char addr_local[ADDR_LEN + 7];
char addr_remote[ADDR_LEN + 7] = "";
if (*count == 0) {
if (ctx->app_type == NET_APP_SERVER) {
printk("Network application server instances\n\n");
} else if (ctx->app_type == NET_APP_CLIENT) {
printk("Network application client instances\n\n");
} else {
printk("Invalid network application type %d\n",
ctx->app_type);
}
}
if (IS_ENABLED(CONFIG_NET_APP_TLS) && ctx->is_tls) {
if (ctx->sock_type == SOCK_STREAM) {
sec_type = "TLS";
}
}
if (IS_ENABLED(CONFIG_NET_APP_DTLS) && ctx->is_tls) {
if (ctx->sock_type == SOCK_DGRAM) {
sec_type = "DTLS";
}
}
if (ctx->app_type == NET_APP_SERVER) {
app_type = "server";
} else if (ctx->app_type == NET_APP_CLIENT) {
app_type = "client";
}
if (ctx->proto == IPPROTO_UDP) {
#if defined(CONFIG_NET_UDP)
proto = "UDP";
#else
proto = "<UDP not configured>";
#endif
}
if (ctx->proto == IPPROTO_TCP) {
#if defined(CONFIG_NET_TCP)
proto = "TCP";
#else
proto = "<TCP not configured>";
#endif
}
printk("[%2d] App-ctx: %p Status: %s Type: %s Protocol: %s\n",
*count, ctx, ctx->is_enabled ? "enabled" : "disabled",
app_type, proto);
#if defined(CONFIG_NET_APP_TLS) || defined(CONFIG_NET_APP_DTLS)
if (ctx->is_tls) {
print_app_sec_info(ctx, sec_type);
}
#endif /* CONFIG_NET_APP_TLS || CONFIG_NET_APP_DTLS */
#if defined(CONFIG_NET_IPV6)
if (ctx->app_type == NET_APP_SERVER) {
if (ctx->ipv6.ctx && ctx->ipv6.ctx->local.family == AF_INET6) {
get_addresses(ctx->ipv6.ctx,
addr_local, sizeof(addr_local),
addr_remote, sizeof(addr_remote));
printk(" Listen IPv6: %16s <- %16s\n",
addr_local, addr_remote);
} else {
printk(" Not listening IPv6 connections.\n");
}
} else if (ctx->app_type == NET_APP_CLIENT) {
if (ctx->ipv6.ctx && ctx->ipv6.ctx->local.family == AF_INET6) {
get_addresses(ctx->ipv6.ctx,
addr_local, sizeof(addr_local),
addr_remote, sizeof(addr_remote));
printk(" Connect IPv6: %16s -> %16s\n",
addr_local, addr_remote);
}
} else {
printk("Invalid application type %d\n", ctx->app_type);
printed = true;
}
#else
printk(" IPv6 connections not enabled.\n");
#endif
#if defined(CONFIG_NET_IPV4)
if (ctx->app_type == NET_APP_SERVER) {
if (ctx->ipv4.ctx && ctx->ipv4.ctx->local.family == AF_INET) {
get_addresses(ctx->ipv4.ctx,
addr_local, sizeof(addr_local),
addr_remote, sizeof(addr_remote));
printk(" Listen IPv4: %16s <- %16s\n",
addr_local, addr_remote);
} else {
printk(" Not listening IPv4 connections.\n");
}
} else if (ctx->app_type == NET_APP_CLIENT) {
if (ctx->ipv4.ctx && ctx->ipv4.ctx->local.family == AF_INET) {
get_addresses(ctx->ipv4.ctx,
addr_local, sizeof(addr_local),
addr_remote, sizeof(addr_remote));
printk(" Connect IPv4: %16s -> %16s\n",
addr_local, addr_remote);
}
} else {
if (!printed) {
printk("Invalid application type %d\n", ctx->app_type);
}
}
#else
printk(" IPv4 connections not enabled.\n");
#endif
#if defined(CONFIG_NET_APP_SERVER)
#if defined(CONFIG_NET_TCP)
{
int i, found = 0;
for (i = 0; i < CONFIG_NET_APP_SERVER_NUM_CONN; i++) {
if (!ctx->server.net_ctxs[i] ||
!net_context_is_used(ctx->server.net_ctxs[i])) {
continue;
}
get_addresses(ctx->server.net_ctxs[i],
addr_local, sizeof(addr_local),
addr_remote, sizeof(addr_remote));
printk(" Active: %16s <- %16s\n",
addr_local, addr_remote);
found++;
}
if (!found) {
printk(" No active connections to this server.\n");
}
}
#else
printk(" TCP not enabled for this server.\n");
#endif
#endif /* CONFIG_NET_APP_SERVER */
(*count)++;
return;
}
#elif defined(CONFIG_NET_DEBUG_APP)
static void net_app_cb(struct net_app_ctx *ctx, void *user_data) {}
#endif
int net_shell_cmd_app(int argc, char *argv[])
{
ARG_UNUSED(argc);
ARG_UNUSED(argv);
#if defined(CONFIG_NET_DEBUG_APP)
int i = 0;
if (IS_ENABLED(CONFIG_NET_APP_SERVER)) {
net_app_server_foreach(net_app_cb, &i);
if (i == 0) {
printk("No net app server instances found.\n");
i = -1;
}
}
if (IS_ENABLED(CONFIG_NET_APP_CLIENT)) {
if (i) {
printk("\n");
i = 0;
}
net_app_client_foreach(net_app_cb, &i);
if (i == 0) {
printk("No net app client instances found.\n");
}
}
#else
printk("Enable CONFIG_NET_DEBUG_APP and either CONFIG_NET_APP_CLIENT "
"or CONFIG_NET_APP_SERVER to see client/server instance "
"information.\n");
#endif
return 0;
}
#if defined(CONFIG_NET_ARP)
static void arp_cb(struct arp_entry *entry, void *user_data)
{
int *count = user_data;
if (*count == 0) {
printk(" Interface Link Address\n");
}
printk("[%2d] %p %s %s\n", *count, entry->iface,
net_sprint_ll_addr(entry->eth.addr,
sizeof(struct net_eth_addr)),
net_sprint_ipv4_addr(&entry->ip));
(*count)++;
}
#endif /* CONFIG_NET_ARP */
int net_shell_cmd_arp(int argc, char *argv[])
{
ARG_UNUSED(argc);
#if defined(CONFIG_NET_ARP)
int arg = 1;
if (!argv[arg]) {
/* ARP cache content */
int count = 0;
if (net_arp_foreach(arp_cb, &count) == 0) {
printk("ARP cache is empty.\n");
}
return 0;
}
if (strcmp(argv[arg], "flush") == 0) {
printk("Flushing ARP cache.\n");
net_arp_clear_cache();
return 0;
}
#else
printk("Enable CONFIG_NET_ARP, CONFIG_NET_IPV4 and "
"CONFIG_NET_L2_ETHERNET to see ARP information.\n");
#endif
return 0;
}
int net_shell_cmd_conn(int argc, char *argv[])
{
int count = 0;
ARG_UNUSED(argc);
ARG_UNUSED(argv);
printk(" Context \tIface Flags "
"Local \tRemote\n");
net_context_foreach(context_cb, &count);
if (count == 0) {
printk("No connections\n");
}
#if defined(CONFIG_NET_DEBUG_CONN)
printk("\n Handler Callback \tProto\t"
"Local \tRemote\n");
count = 0;
net_conn_foreach(conn_handler_cb, &count);
if (count == 0) {
printk("No connection handlers found.\n");
}
#endif
#if defined(CONFIG_NET_TCP)
printk("\nTCP Src port Dst port Send-Seq Send-Ack MSS"
"%s\n", IS_ENABLED(CONFIG_NET_DEBUG_TCP) ? " State" : "");
count = 0;
net_tcp_foreach(tcp_cb, &count);
if (count == 0) {
printk("No TCP connections\n");
} else {
#if defined(CONFIG_NET_DEBUG_TCP)
/* Print information about pending packets */
count = 0;
net_tcp_foreach(tcp_sent_list_cb, &count);
#endif /* CONFIG_NET_DEBUG_TCP */
}
#endif
#if defined(CONFIG_NET_IPV6_FRAGMENT)
count = 0;
net_ipv6_frag_foreach(ipv6_frag_cb, &count);
/* Do not print anything if no fragments are pending atm */
#endif
return 0;
}
#if defined(CONFIG_DNS_RESOLVER)
static void dns_result_cb(enum dns_resolve_status status,
struct dns_addrinfo *info,
void *user_data)
{
bool *first = user_data;
if (status == DNS_EAI_CANCELED) {
printk("\nTimeout while resolving name.\n");
*first = false;
return;
}
if (status == DNS_EAI_INPROGRESS && info) {
char addr[NET_IPV6_ADDR_LEN];
if (*first) {
printk("\n");
*first = false;
}
if (info->ai_family == AF_INET) {
net_addr_ntop(AF_INET,
&net_sin(&info->ai_addr)->sin_addr,
addr, NET_IPV4_ADDR_LEN);
} else if (info->ai_family == AF_INET6) {
net_addr_ntop(AF_INET6,
&net_sin6(&info->ai_addr)->sin6_addr,
addr, NET_IPV6_ADDR_LEN);
} else {
strncpy(addr, "Invalid protocol family",
sizeof(addr));
}
printk("\t%s\n", addr);
return;
}
if (status == DNS_EAI_ALLDONE) {
printk("All results received\n");
*first = false;
return;
}
if (status == DNS_EAI_FAIL) {
printk("No such name found.\n");
*first = false;
return;
}
printk("Unhandled status %d received\n", status);
}
static void print_dns_info(struct dns_resolve_context *ctx)
{
int i;
printk("DNS servers:\n");
for (i = 0; i < CONFIG_DNS_RESOLVER_MAX_SERVERS + MDNS_SERVER_COUNT; i++) {
if (ctx->servers[i].dns_server.sa_family == AF_INET) {
printk("\t%s:%u\n",
net_sprint_ipv4_addr(
&net_sin(&ctx->servers[i].dns_server)->
sin_addr),
ntohs(net_sin(&ctx->servers[i].
dns_server)->sin_port));
} else if (ctx->servers[i].dns_server.sa_family == AF_INET6) {
printk("\t[%s]:%u\n",
net_sprint_ipv6_addr(
&net_sin6(&ctx->servers[i].dns_server)->
sin6_addr),
ntohs(net_sin6(&ctx->servers[i].
dns_server)->sin6_port));
}
}
printk("Pending queries:\n");
for (i = 0; i < CONFIG_DNS_NUM_CONCUR_QUERIES; i++) {
s32_t remaining;
if (!ctx->queries[i].cb) {
continue;
}
remaining =
k_delayed_work_remaining_get(&ctx->queries[i].timer);
if (ctx->queries[i].query_type == DNS_QUERY_TYPE_A) {
printk("\tIPv4[%u]: %s remaining %d\n",
ctx->queries[i].id,
ctx->queries[i].query,
remaining);
} else if (ctx->queries[i].query_type == DNS_QUERY_TYPE_AAAA) {
printk("\tIPv6[%u]: %s remaining %d\n",
ctx->queries[i].id,
ctx->queries[i].query,
remaining);
}
}
}
#endif
int net_shell_cmd_dns(int argc, char *argv[])
{
#if defined(CONFIG_DNS_RESOLVER)
#define DNS_TIMEOUT 2000 /* ms */
struct dns_resolve_context *ctx;
enum dns_query_type qtype = DNS_QUERY_TYPE_A;
char *host, *type = NULL;
bool first = true;
int arg = 1;
int ret, i;
if (!argv[arg]) {
/* DNS status */
ctx = dns_resolve_get_default();
if (!ctx) {
printk("No default DNS context found.\n");
return 0;
}
print_dns_info(ctx);
return 0;
}
if (strcmp(argv[arg], "cancel") == 0) {
ctx = dns_resolve_get_default();
if (!ctx) {
printk("No default DNS context found.\n");
return 0;
}
for (ret = 0, i = 0; i < CONFIG_DNS_NUM_CONCUR_QUERIES; i++) {
if (!ctx->queries[i].cb) {
continue;
}
if (!dns_resolve_cancel(ctx, ctx->queries[i].id)) {
ret++;
}
}
if (ret) {
printk("Cancelled %d pending requests.\n", ret);
} else {
printk("No pending DNS requests.\n");
}
return 0;
}
host = argv[arg++];
if (argv[arg]) {
type = argv[arg];
}
if (type) {
if (strcmp(type, "A") == 0) {
qtype = DNS_QUERY_TYPE_A;
printk("IPv4 address type\n");
} else if (strcmp(type, "AAAA") == 0) {
qtype = DNS_QUERY_TYPE_AAAA;
printk("IPv6 address type\n");
} else {
printk("Unknown query type, specify either "
"A or AAAA\n");
return 0;
}
}
ret = dns_get_addr_info(host, qtype, NULL, dns_result_cb, &first,
DNS_TIMEOUT);
if (ret < 0) {
printk("Cannot resolve '%s' (%d)\n", host, ret);
} else {
printk("Query for '%s' sent.\n", host);
}
#else
printk("DNS resolver not supported.\n");
#endif
return 0;
}
#if defined(CONFIG_NET_DEBUG_HTTP_CONN) && defined(CONFIG_HTTP_SERVER)
#define MAX_HTTP_OUTPUT_LEN 64
static char *http_str_output(char *output, int outlen, const char *str, int len)
{
if (len > outlen) {
len = outlen;
}
if (len == 0) {
memset(output, 0, outlen);
} else {
memcpy(output, str, len);
output[len] = '\0';
}
return output;
}
#if !defined(CONFIG_HTTP_APP)
static void http_server_cb(struct http_server_ctx *entry,
void *user_data)
{
int *count = user_data;
static char output[MAX_HTTP_OUTPUT_LEN];
/* +7 for []:port */
char addr_local[ADDR_LEN + 7];
char addr_remote[ADDR_LEN + 7] = "";
get_addresses(entry->req.net_ctx, addr_local, sizeof(addr_local),
addr_remote, sizeof(addr_remote));
if (*count == 0) {
printk(" HTTP ctx Local \t"
"Remote \tURL\n");
}
(*count)++;
printk("[%2d] %c%c %p %16s\t%16s\t%s\n",
*count, entry->enabled ? 'E' : 'D',
entry->is_https ? 'S' : ' ',
entry, addr_local, addr_remote,
http_str_output(output, sizeof(output) - 1,
entry->req.url, entry->req.url_len));
}
#endif
#if defined(CONFIG_HTTP_APP)
static void http_server_cb(struct http_ctx *entry, void *user_data)
{
int *count = user_data;
static char output[MAX_HTTP_OUTPUT_LEN];
int i;
/* +7 for []:port */
char addr_local[ADDR_LEN + 7];
char addr_remote[ADDR_LEN + 7] = "";
if (*count == 0) {
printk(" HTTP ctx Local \t"
"Remote \tURL\n");
}
(*count)++;
for (i = 0; i < CONFIG_NET_APP_SERVER_NUM_CONN; i++) {
if (!entry->app_ctx.server.net_ctxs[i] ||
!net_context_is_used(entry->app_ctx.server.net_ctxs[i])) {
continue;
}
get_addresses(entry->app_ctx.server.net_ctxs[i],
addr_local, sizeof(addr_local),
addr_remote, sizeof(addr_remote));
printk("[%2d] %c%c %p %16s\t%16s\t%s\n",
*count,
entry->app_ctx.is_enabled ? 'E' : 'D',
entry->is_tls ? 'S' : ' ',
entry, addr_local, addr_remote,
http_str_output(output, sizeof(output) - 1,
entry->http.url, entry->http.url_len));
}
}
#endif /* CONFIG_HTTP_APP */
#endif /* CONFIG_NET_DEBUG_HTTP_CONN && CONFIG_HTTP_SERVER */
int net_shell_cmd_http(int argc, char *argv[])
{
ARG_UNUSED(argc);
ARG_UNUSED(argv);
#if defined(CONFIG_NET_DEBUG_HTTP_CONN) && defined(CONFIG_HTTP_SERVER)
static int count;
int arg = 1;
count = 0;
/* Turn off monitoring if it was enabled */
http_server_conn_monitor(NULL, NULL);
if (strcmp(argv[0], "http")) {
arg++;
}
if (argv[arg]) {
if (strcmp(argv[arg], "monitor") == 0) {
printk("Activating HTTP monitor. Type \"net http\" "
"to disable HTTP connection monitoring.\n");
http_server_conn_monitor(http_server_cb, &count);
}
} else {
http_server_conn_foreach(http_server_cb, &count);
}
#else
printk("Enable CONFIG_NET_DEBUG_HTTP_CONN and CONFIG_HTTP_SERVER "
"to get HTTP server connection information\n");
#endif
return 0;
}
int net_shell_cmd_iface(int argc, char *argv[])
{
ARG_UNUSED(argc);
ARG_UNUSED(argv);
#if defined(CONFIG_NET_HOSTNAME_ENABLE)
printk("Hostname: %s\n\n", net_hostname_get());
#endif
net_if_foreach(iface_cb, NULL);
return 0;
}
struct ctx_info {
int pos;
bool are_external_pools;
struct k_mem_slab *tx_slabs[CONFIG_NET_MAX_CONTEXTS];
struct net_buf_pool *data_pools[CONFIG_NET_MAX_CONTEXTS];
};
#if defined(CONFIG_NET_CONTEXT_NET_PKT_POOL)
static bool slab_pool_found_already(struct ctx_info *info,
struct k_mem_slab *slab,
struct net_buf_pool *pool)
{
int i;
for (i = 0; i < CONFIG_NET_MAX_CONTEXTS; i++) {
if (slab) {
if (info->tx_slabs[i] == slab) {
return true;
}
} else {
if (info->data_pools[i] == pool) {
return true;
}
}
}
return false;
}
#endif
static void context_info(struct net_context *context, void *user_data)
{
#if defined(CONFIG_NET_CONTEXT_NET_PKT_POOL)
struct ctx_info *info = user_data;
struct k_mem_slab *slab;
struct net_buf_pool *pool;
if (!net_context_is_used(context)) {
return;
}
if (context->tx_slab) {
slab = context->tx_slab();
if (slab_pool_found_already(info, slab, NULL)) {
return;
}
#if defined(CONFIG_NET_DEBUG_NET_PKT)
printk("%p\t%zu\t%u\t%u\tETX\n",
slab, slab->num_blocks * slab->block_size,
slab->num_blocks, k_mem_slab_num_free_get(slab));
#else
printk("%p\t%d\tETX\n", slab, slab->num_blocks);
#endif
info->are_external_pools = true;
info->tx_slabs[info->pos] = slab;
}
if (context->data_pool) {
pool = context->data_pool();
if (slab_pool_found_already(info, NULL, pool)) {
return;
}
#if defined(CONFIG_NET_DEBUG_NET_PKT)
printk("%p\t%d\t%d\t%d\tEDATA (%s)\n",
pool, pool->pool_size, pool->buf_count,
pool->avail_count, pool->name);
#else
printk("%p\t%d\tEDATA\n", pool, pool->buf_count);
#endif
info->are_external_pools = true;
info->data_pools[info->pos] = pool;
}
info->pos++;
#endif /* CONFIG_NET_CONTEXT_NET_PKT_POOL */
}
int net_shell_cmd_mem(int argc, char *argv[])
{
struct k_mem_slab *rx, *tx;
struct net_buf_pool *rx_data, *tx_data;
ARG_UNUSED(argc);
ARG_UNUSED(argv);
net_pkt_get_info(&rx, &tx, &rx_data, &tx_data);
printk("Fragment length %d bytes\n", CONFIG_NET_BUF_DATA_SIZE);
printk("Network buffer pools:\n");
#if defined(CONFIG_NET_BUF_POOL_USAGE)
printk("Address\t\tSize\tTotal\tAvail\tName\n");
printk("%p\t%zu\t%d\t%u\tRX\n",
rx, rx->num_blocks * rx->block_size,
rx->num_blocks, k_mem_slab_num_free_get(rx));
printk("%p\t%zu\t%d\t%u\tTX\n",
tx, tx->num_blocks * tx->block_size,
tx->num_blocks, k_mem_slab_num_free_get(tx));
printk("%p\t%d\t%d\t%d\tRX DATA (%s)\n",
rx_data, rx_data->pool_size, rx_data->buf_count,
rx_data->avail_count, rx_data->name);
printk("%p\t%d\t%d\t%d\tTX DATA (%s)\n",
tx_data, tx_data->pool_size, tx_data->buf_count,
tx_data->avail_count, tx_data->name);
#else
printk("(CONFIG_NET_BUF_POOL_USAGE to see free #s)\n");
printk("Address\t\tTotal\tName\n");
printk("%p\t%d\tRX\n", rx, rx->num_blocks);
printk("%p\t%d\tTX\n", tx, tx->num_blocks);
printk("%p\t%d\tRX DATA\n", rx_data, rx_data->buf_count);
printk("%p\t%d\tTX DATA\n", tx_data, tx_data->buf_count);
#endif /* CONFIG_NET_BUF_POOL_USAGE */
if (IS_ENABLED(CONFIG_NET_CONTEXT_NET_PKT_POOL)) {
struct ctx_info info;
memset(&info, 0, sizeof(info));
net_context_foreach(context_info, &info);
if (!info.are_external_pools) {
printk("No external memory pools found.\n");
}
}
return 0;
}
#if defined(CONFIG_NET_IPV6)
static void nbr_cb(struct net_nbr *nbr, void *user_data)
{
int *count = user_data;
char *padding = "";
char *state_pad = "";
const char *state_str;
#if defined(CONFIG_NET_L2_IEEE802154)
padding = " ";
#endif
if (*count == 0) {
printk(" Neighbor Interface Flags State "
"Remain Link %sAddress\n", padding);
}
(*count)++;
state_str = net_ipv6_nbr_state2str(net_ipv6_nbr_data(nbr)->state);
/* This is not a proper way but the minimal libc does not honor
* string lengths in %s modifier so in order the output to look
* nice, do it like this.
*/
if (strlen(state_str) == 5) {
state_pad = " ";
}
printk("[%2d] %p %p %5d/%d/%d/%d %s%s %6d %17s%s %s\n",
*count, nbr, nbr->iface,
net_ipv6_nbr_data(nbr)->link_metric,
nbr->ref,
net_ipv6_nbr_data(nbr)->ns_count,
net_ipv6_nbr_data(nbr)->is_router,
state_str,
state_pad,
#if defined(CONFIG_NET_IPV6_ND)
k_delayed_work_remaining_get(
&net_ipv6_nbr_data(nbr)->reachable),
#else
0,
#endif
nbr->idx == NET_NBR_LLADDR_UNKNOWN ? "?" :
net_sprint_ll_addr(
net_nbr_get_lladdr(nbr->idx)->addr,
net_nbr_get_lladdr(nbr->idx)->len),
net_nbr_get_lladdr(nbr->idx)->len == 8 ? "" : padding,
net_sprint_ipv6_addr(&net_ipv6_nbr_data(nbr)->addr));
}
#endif
int net_shell_cmd_nbr(int argc, char *argv[])
{
#if defined(CONFIG_NET_IPV6)
int count = 0;
int arg = 1;
if (argv[arg]) {
struct in6_addr addr;
int ret;
if (strcmp(argv[arg], "rm")) {
printk("Unknown command '%s'\n", argv[arg]);
return 0;
}
if (!argv[++arg]) {
printk("Neighbor IPv6 address missing.\n");
return 0;
}
ret = net_addr_pton(AF_INET6, argv[arg], &addr);
if (ret < 0) {
printk("Cannot parse '%s'\n", argv[arg]);
return 0;
}
if (!net_ipv6_nbr_rm(NULL, &addr)) {
printk("Cannot remove neighbor %s\n",
net_sprint_ipv6_addr(&addr));
} else {
printk("Neighbor %s removed.\n",
net_sprint_ipv6_addr(&addr));
}
}
net_ipv6_nbr_foreach(nbr_cb, &count);
if (count == 0) {
printk("No neighbors.\n");
}
#else
printk("IPv6 not enabled.\n");
#endif /* CONFIG_NET_IPV6 */
return 0;
}
#if defined(CONFIG_NET_IPV6) || defined(CONFIG_NET_IPV4)
K_SEM_DEFINE(ping_timeout, 0, 1);
#if defined(CONFIG_NET_IPV6)
static enum net_verdict _handle_ipv6_echo_reply(struct net_pkt *pkt);
static struct net_icmpv6_handler ping6_handler = {
.type = NET_ICMPV6_ECHO_REPLY,
.code = 0,
.handler = _handle_ipv6_echo_reply,
};
static inline void _remove_ipv6_ping_handler(void)
{
net_icmpv6_unregister_handler(&ping6_handler);
}
static enum net_verdict _handle_ipv6_echo_reply(struct net_pkt *pkt)
{
char addr[NET_IPV6_ADDR_LEN];
snprintk(addr, sizeof(addr), "%s",
net_sprint_ipv6_addr(&NET_IPV6_HDR(pkt)->dst));
printk("Received echo reply from %s to %s\n",
net_sprint_ipv6_addr(&NET_IPV6_HDR(pkt)->src), addr);
k_sem_give(&ping_timeout);
_remove_ipv6_ping_handler();
return NET_OK;
}
static int _ping_ipv6(char *host)
{
struct in6_addr ipv6_target;
struct net_if *iface = net_if_get_default();
struct net_nbr *nbr;
int ret;
#if defined(CONFIG_NET_ROUTE)
struct net_route_entry *route;
#endif
if (net_addr_pton(AF_INET6, host, &ipv6_target) < 0) {
return -EINVAL;
}
net_icmpv6_register_handler(&ping6_handler);
nbr = net_ipv6_nbr_lookup(NULL, &ipv6_target);
if (nbr) {
iface = nbr->iface;
}
#if defined(CONFIG_NET_ROUTE)
route = net_route_lookup(NULL, &ipv6_target);
if (route) {
iface = route->iface;
}
#endif
ret = net_icmpv6_send_echo_request(iface,
&ipv6_target,
sys_rand32_get(),
sys_rand32_get());
if (ret) {
_remove_ipv6_ping_handler();
} else {
printk("Sent a ping to %s\n", host);
}
return ret;
}
#else
#define _ping_ipv6(...) -EINVAL
#define _remove_ipv6_ping_handler()
#endif /* CONFIG_NET_IPV6 */
#if defined(CONFIG_NET_IPV4)
static enum net_verdict _handle_ipv4_echo_reply(struct net_pkt *pkt);
static struct net_icmpv4_handler ping4_handler = {
.type = NET_ICMPV4_ECHO_REPLY,
.code = 0,
.handler = _handle_ipv4_echo_reply,
};
static inline void _remove_ipv4_ping_handler(void)
{
net_icmpv4_unregister_handler(&ping4_handler);
}
static enum net_verdict _handle_ipv4_echo_reply(struct net_pkt *pkt)
{
char addr[NET_IPV4_ADDR_LEN];
snprintk(addr, sizeof(addr), "%s",
net_sprint_ipv4_addr(&NET_IPV4_HDR(pkt)->dst));
printk("Received echo reply from %s to %s\n",
net_sprint_ipv4_addr(&NET_IPV4_HDR(pkt)->src), addr);
k_sem_give(&ping_timeout);
_remove_ipv4_ping_handler();
return NET_OK;
}
static int _ping_ipv4(char *host)
{
struct in_addr ipv4_target;
int ret;
if (net_addr_pton(AF_INET, host, &ipv4_target) < 0) {
return -EINVAL;
}
net_icmpv4_register_handler(&ping4_handler);
ret = net_icmpv4_send_echo_request(net_if_get_default(),
&ipv4_target,
sys_rand32_get(),
sys_rand32_get());
if (ret) {
_remove_ipv4_ping_handler();
} else {
printk("Sent a ping to %s\n", host);
}
return ret;
}
#else
#define _ping_ipv4(...) -EINVAL
#define _remove_ipv4_ping_handler()
#endif /* CONFIG_NET_IPV4 */
#endif /* CONFIG_NET_IPV6 || CONFIG_NET_IPV4 */
int net_shell_cmd_ping(int argc, char *argv[])
{
char *host;
int ret;
ARG_UNUSED(argc);
if (!strcmp(argv[0], "ping")) {
host = argv[1];
} else {
host = argv[2];
}
if (!host) {
printk("Target host missing\n");
return 0;
}
ret = _ping_ipv6(host);
if (!ret) {
goto wait_reply;
} else if (ret == -EIO) {
printk("Cannot send IPv6 ping\n");
return 0;
}
ret = _ping_ipv4(host);
if (ret) {
if (ret == -EIO) {
printk("Cannot send IPv4 ping\n");
} else if (ret == -EINVAL) {
printk("Invalid IP address\n");
}
return 0;
}
wait_reply:
ret = k_sem_take(&ping_timeout, K_SECONDS(2));
if (ret == -EAGAIN) {
printk("Ping timeout\n");
_remove_ipv6_ping_handler();
_remove_ipv4_ping_handler();
}
return 0;
}
int net_shell_cmd_route(int argc, char *argv[])
{
ARG_UNUSED(argc);
ARG_UNUSED(argv);
#if defined(CONFIG_NET_ROUTE)
net_if_foreach(iface_per_route_cb, NULL);
#else
printk("Network route support not compiled in.\n");
#endif
#if defined(CONFIG_NET_ROUTE_MCAST)
net_if_foreach(iface_per_mcast_route_cb, NULL);
#endif
return 0;
}
#if defined(CONFIG_NET_RPL)
static int power(int base, unsigned int exp)
{
int i, result = 1;
for (i = 0; i < exp; i++) {
result *= base;
}
return result;
}
static void rpl_parent(struct net_rpl_parent *parent, void *user_data)
{
int *count = user_data;
if (*count == 0) {
printk(" Parent Last TX Rank DTSN Flags DAG\t\t\t"
"Address\n");
}
(*count)++;
if (parent->dag) {
struct net_ipv6_nbr_data *data;
char addr[NET_IPV6_ADDR_LEN];
data = net_rpl_get_ipv6_nbr_data(parent);
if (data) {
snprintk(addr, sizeof(addr), "%s",
net_sprint_ipv6_addr(&data->addr));
} else {
snprintk(addr, sizeof(addr), "<unknown>");
}
printk("[%2d]%s %p %7d %5d %3d 0x%02x %s\t%s\n",
*count,
parent->dag->preferred_parent == parent ? "*" : " ",
parent, parent->last_tx_time, parent->rank,
parent->dtsn, parent->flags,
net_sprint_ipv6_addr(&parent->dag->dag_id),
addr);
}
}
#endif /* CONFIG_NET_RPL */
int net_shell_cmd_rpl(int argc, char *argv[])
{
ARG_UNUSED(argc);
ARG_UNUSED(argv);
#if defined(CONFIG_NET_RPL)
struct net_rpl_instance *instance;
enum net_rpl_mode mode;
int i, count;
mode = net_rpl_get_mode();
printk("RPL Configuration\n");
printk("=================\n");
printk("RPL mode : %s\n",
mode == NET_RPL_MODE_MESH ? "mesh" :
(mode == NET_RPL_MODE_FEATHER ? "feather" :
(mode == NET_RPL_MODE_LEAF ? "leaf" : "<unknown>")));
printk("Used objective function : %s\n",
IS_ENABLED(CONFIG_NET_RPL_MRHOF) ? "MRHOF" :
(IS_ENABLED(CONFIG_NET_RPL_OF0) ? "OF0" : "<unknown>"));
printk("Used routing metric : %s\n",
IS_ENABLED(CONFIG_NET_RPL_MC_NONE) ? "none" :
(IS_ENABLED(CONFIG_NET_RPL_MC_ETX) ? "estimated num of TX" :
(IS_ENABLED(CONFIG_NET_RPL_MC_ENERGY) ? "energy based" :
"<unknown>")));
printk("Mode of operation (MOP) : %s\n",
IS_ENABLED(CONFIG_NET_RPL_MOP2) ? "Storing, no mcast (MOP2)" :
(IS_ENABLED(CONFIG_NET_RPL_MOP3) ? "Storing (MOP3)" :
"<unknown>"));
printk("Send probes to nodes : %s\n",
IS_ENABLED(CONFIG_NET_RPL_PROBING) ? "enabled" : "disabled");
printk("Max instances : %d\n",
CONFIG_NET_RPL_MAX_INSTANCES);
printk("Max DAG / instance : %d\n",
CONFIG_NET_RPL_MAX_DAG_PER_INSTANCE);
printk("Min hop rank increment : %d\n",
CONFIG_NET_RPL_MIN_HOP_RANK_INC);
printk("Initial link metric : %d\n",
CONFIG_NET_RPL_INIT_LINK_METRIC);
printk("RPL preference value : %d\n",
CONFIG_NET_RPL_PREFERENCE);
printk("DAG grounded by default : %s\n",
IS_ENABLED(CONFIG_NET_RPL_GROUNDED) ? "yes" : "no");
printk("Default instance id : %d (0x%02x)\n",
CONFIG_NET_RPL_DEFAULT_INSTANCE,
CONFIG_NET_RPL_DEFAULT_INSTANCE);
printk("Insert Hop-by-hop option : %s\n",
IS_ENABLED(CONFIG_NET_RPL_INSERT_HBH_OPTION) ? "yes" : "no");
printk("Specify DAG when sending DAO : %s\n",
IS_ENABLED(CONFIG_NET_RPL_DAO_SPECIFY_DAG) ? "yes" : "no");
printk("DIO min interval : %d (%d ms)\n",
CONFIG_NET_RPL_DIO_INTERVAL_MIN,
power(2, CONFIG_NET_RPL_DIO_INTERVAL_MIN));
printk("DIO doublings interval : %d\n",
CONFIG_NET_RPL_DIO_INTERVAL_DOUBLINGS);
printk("DIO redundancy value : %d\n",
CONFIG_NET_RPL_DIO_REDUNDANCY);
printk("DAO sending timer value : %d sec\n",
CONFIG_NET_RPL_DAO_TIMER);
printk("DAO max retransmissions : %d\n",
CONFIG_NET_RPL_DAO_MAX_RETRANSMISSIONS);
printk("Node expecting DAO ack : %s\n",
IS_ENABLED(CONFIG_NET_RPL_DAO_ACK) ? "yes" : "no");
printk("Send DIS periodically : %s\n",
IS_ENABLED(CONFIG_NET_RPL_DIS_SEND) ? "yes" : "no");
#if defined(CONFIG_NET_RPL_DIS_SEND)
printk("DIS interval : %d sec\n",
CONFIG_NET_RPL_DIS_INTERVAL);
#endif
printk("Default route lifetime unit : %d sec\n",
CONFIG_NET_RPL_DEFAULT_LIFETIME_UNIT);
printk("Default route lifetime : %d\n",
CONFIG_NET_RPL_DEFAULT_LIFETIME);
#if defined(CONFIG_NET_RPL_MOP3)
printk("Multicast route lifetime : %d\n",
CONFIG_NET_RPL_MCAST_LIFETIME);
#endif
printk("\nRuntime status\n");
printk("==============\n");
instance = net_rpl_get_default_instance();
if (!instance) {
printk("No default RPL instance found.\n");
return 0;
}
printk("Default instance (id %d) : %p (%s)\n", instance->instance_id,
instance, instance->is_used ? "active" : "disabled");
if (instance->default_route) {
printk("Default route : %s\n",
net_sprint_ipv6_addr(
&instance->default_route->address.in6_addr));
}
#if defined(CONFIG_NET_STATISTICS_RPL)
printk("DIO statistics : intervals %d sent %d recv %d\n",
instance->dio_intervals, instance->dio_send_pkt,
instance->dio_recv_pkt);
#endif /* CONFIG_NET_STATISTICS_RPL */
printk("Instance DAGs :\n");
for (i = 0, count = 0; i < CONFIG_NET_RPL_MAX_DAG_PER_INSTANCE; i++) {
char prefix[NET_IPV6_ADDR_LEN];
if (!instance->dags[i].is_used) {
continue;
}
snprintk(prefix, sizeof(prefix), "%s",
net_sprint_ipv6_addr(
&instance->dags[i].prefix_info.prefix));
printk("[%2d]%s %s prefix %s/%d rank %d/%d ver %d flags %c%c "
"parent %p\n",
++count,
&instance->dags[i] == instance->current_dag ? "*" : " ",
net_sprint_ipv6_addr(&instance->dags[i].dag_id),
prefix, instance->dags[i].prefix_info.length,
instance->dags[i].rank, instance->dags[i].min_rank,
instance->dags[i].version,
instance->dags[i].is_grounded ? 'G' : 'g',
instance->dags[i].is_joined ? 'J' : 'j',
instance->dags[i].preferred_parent);
}
printk("\n");
count = 0;
i = net_rpl_foreach_parent(rpl_parent, &count);
if (i == 0) {
printk("No parents found.\n");
}
printk("\n");
#else
printk("RPL not enabled, set CONFIG_NET_RPL to enable it.\n");
#endif
return 0;
}
#if defined(CONFIG_INIT_STACKS)
extern K_THREAD_STACK_DEFINE(_main_stack, CONFIG_MAIN_STACK_SIZE);
extern K_THREAD_STACK_DEFINE(_interrupt_stack, CONFIG_ISR_STACK_SIZE);
extern K_THREAD_STACK_DEFINE(sys_work_q_stack,
CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE);
#endif
int net_shell_cmd_stacks(int argc, char *argv[])
{
#if defined(CONFIG_INIT_STACKS)
unsigned int pcnt, unused;
#endif
struct net_stack_info *info;
ARG_UNUSED(argc);
ARG_UNUSED(argv);
for (info = __net_stack_start; info != __net_stack_end; info++) {
net_analyze_stack_get_values(K_THREAD_STACK_BUFFER(info->stack),
info->size, &pcnt, &unused);
#if defined(CONFIG_INIT_STACKS)
printk("%s [%s] stack size %zu/%zu bytes unused %u usage"
" %zu/%zu (%u %%)\n",
info->pretty_name, info->name, info->orig_size,
info->size, unused,
info->size - unused, info->size, pcnt);
#else
printk("%s [%s] stack size %zu usage not available\n",
info->pretty_name, info->name, info->orig_size);
#endif
}
#if defined(CONFIG_INIT_STACKS)
net_analyze_stack_get_values(K_THREAD_STACK_BUFFER(_main_stack),
K_THREAD_STACK_SIZEOF(_main_stack),
&pcnt, &unused);
printk("%s [%s] stack size %d/%d bytes unused %u usage"
" %d/%d (%u %%)\n",
"main", "_main_stack", CONFIG_MAIN_STACK_SIZE,
CONFIG_MAIN_STACK_SIZE, unused,
CONFIG_MAIN_STACK_SIZE - unused, CONFIG_MAIN_STACK_SIZE, pcnt);
net_analyze_stack_get_values(K_THREAD_STACK_BUFFER(_interrupt_stack),
K_THREAD_STACK_SIZEOF(_interrupt_stack),
&pcnt, &unused);
printk("%s [%s] stack size %d/%d bytes unused %u usage"
" %d/%d (%u %%)\n",
"ISR", "_interrupt_stack", CONFIG_ISR_STACK_SIZE,
CONFIG_ISR_STACK_SIZE, unused,
CONFIG_ISR_STACK_SIZE - unused, CONFIG_ISR_STACK_SIZE, pcnt);
net_analyze_stack_get_values(K_THREAD_STACK_BUFFER(sys_work_q_stack),
K_THREAD_STACK_SIZEOF(sys_work_q_stack),
&pcnt, &unused);
printk("%s [%s] stack size %d/%d bytes unused %u usage"
" %d/%d (%u %%)\n",
"WORKQ", "system workqueue",
CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE,
CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE, unused,
CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE - unused,
CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE, pcnt);
#else
printk("Enable CONFIG_INIT_STACKS to see usage information.\n");
#endif
return 0;
}
int net_shell_cmd_stats(int argc, char *argv[])
{
ARG_UNUSED(argc);
ARG_UNUSED(argv);
#if defined(CONFIG_NET_STATISTICS)
net_shell_print_statistics();
#else
printk("Network statistics not compiled in.\n");
#endif
return 0;
}
#if defined(CONFIG_NET_TCP)
static struct net_context *tcp_ctx;
#define TCP_CONNECT_TIMEOUT K_SECONDS(5) /* ms */
#define TCP_TIMEOUT K_SECONDS(2) /* ms */
static void tcp_connected(struct net_context *context,
int status,
void *user_data)
{
if (status < 0) {
printk("TCP connection failed (%d)\n", status);
net_context_put(context);
tcp_ctx = NULL;
} else {
printk("TCP connected\n");
}
}
#if defined(CONFIG_NET_IPV6)
static void get_my_ipv6_addr(struct net_if *iface,
struct sockaddr *myaddr)
{
const struct in6_addr *my6addr;
my6addr = net_if_ipv6_select_src_addr(iface,
&net_sin6(myaddr)->sin6_addr);
memcpy(&net_sin6(myaddr)->sin6_addr, my6addr, sizeof(struct in6_addr));
net_sin6(myaddr)->sin6_port = 0; /* let the IP stack to select */
}
#endif
#if defined(CONFIG_NET_IPV4)
static void get_my_ipv4_addr(struct net_if *iface,
struct sockaddr *myaddr)
{
/* Just take the first IPv4 address of an interface. */
memcpy(&net_sin(myaddr)->sin_addr,
&iface->ipv4.unicast[0].address.in_addr,
sizeof(struct in_addr));
net_sin(myaddr)->sin_port = 0; /* let the IP stack to select */
}
#endif
static void print_connect_info(int family,
struct sockaddr *myaddr,
struct sockaddr *addr)
{
switch (family) {
case AF_INET:
#if defined(CONFIG_NET_IPV4)
printk("Connecting from %s:%u ",
net_sprint_ipv4_addr(&net_sin(myaddr)->sin_addr),
ntohs(net_sin(myaddr)->sin_port));
printk("to %s:%u\n",
net_sprint_ipv4_addr(&net_sin(addr)->sin_addr),
ntohs(net_sin(addr)->sin_port));
#else
printk("IPv4 not supported\n");
#endif
break;
case AF_INET6:
#if defined(CONFIG_NET_IPV6)
printk("Connecting from [%s]:%u ",
net_sprint_ipv6_addr(&net_sin6(myaddr)->sin6_addr),
ntohs(net_sin6(myaddr)->sin6_port));
printk("to [%s]:%u\n",
net_sprint_ipv6_addr(&net_sin6(addr)->sin6_addr),
ntohs(net_sin6(addr)->sin6_port));
#else
printk("IPv6 not supported\n");
#endif
break;
default:
printk("Unknown protocol family (%d)\n", family);
break;
}
}
static int tcp_connect(char *host, u16_t port, struct net_context **ctx)
{
struct sockaddr addr;
struct sockaddr myaddr;
struct net_nbr *nbr;
struct net_if *iface = net_if_get_default();
int addrlen;
int family;
int ret;
#if defined(CONFIG_NET_IPV6) && !defined(CONFIG_NET_IPV4)
ret = net_addr_pton(AF_INET6, host, &net_sin6(&addr)->sin6_addr);
if (ret < 0) {
printk("Invalid IPv6 address\n");
return 0;
}
net_sin6(&addr)->sin6_port = htons(port);
addrlen = sizeof(struct sockaddr_in6);
nbr = net_ipv6_nbr_lookup(NULL, &net_sin6(&addr)->sin6_addr);
if (nbr) {
iface = nbr->iface;
}
get_my_ipv6_addr(iface, &myaddr);
family = addr.sa_family = myaddr.sa_family = AF_INET6;
#endif
#if defined(CONFIG_NET_IPV4) && !defined(CONFIG_NET_IPV6)
ARG_UNUSED(nbr);
ret = net_addr_pton(AF_INET, host, &net_sin(&addr)->sin_addr);
if (ret < 0) {
printk("Invalid IPv4 address\n");
return 0;
}
get_my_ipv4_addr(iface, &myaddr);
net_sin(&addr)->sin_port = htons(port);
addrlen = sizeof(struct sockaddr_in);
family = addr.sa_family = myaddr.sa_family = AF_INET;
#endif
#if defined(CONFIG_NET_IPV6) && defined(CONFIG_NET_IPV4)
ret = net_addr_pton(AF_INET6, host, &net_sin6(&addr)->sin6_addr);
if (ret < 0) {
ret = net_addr_pton(AF_INET, host, &net_sin(&addr)->sin_addr);
if (ret < 0) {
printk("Invalid IP address\n");
return 0;
}
net_sin(&addr)->sin_port = htons(port);
addrlen = sizeof(struct sockaddr_in);
get_my_ipv4_addr(iface, &myaddr);
family = addr.sa_family = myaddr.sa_family = AF_INET;
} else {
net_sin6(&addr)->sin6_port = htons(port);
addrlen = sizeof(struct sockaddr_in6);
nbr = net_ipv6_nbr_lookup(NULL, &net_sin6(&addr)->sin6_addr);
if (nbr) {
iface = nbr->iface;
}
get_my_ipv6_addr(iface, &myaddr);
family = addr.sa_family = myaddr.sa_family = AF_INET6;
}
#endif
print_connect_info(family, &myaddr, &addr);
ret = net_context_get(family, SOCK_STREAM, IPPROTO_TCP, ctx);
if (ret < 0) {
printk("Cannot get TCP context (%d)\n", ret);
return ret;
}
ret = net_context_bind(*ctx, &myaddr, addrlen);
if (ret < 0) {
printk("Cannot bind TCP (%d)\n", ret);
return ret;
}
return net_context_connect(*ctx, &addr, addrlen, tcp_connected,
K_NO_WAIT, NULL);
}
static void tcp_sent_cb(struct net_context *context,
int status,
void *token,
void *user_data)
{
printk("Message sent\n");
}
#endif
int net_shell_cmd_tcp(int argc, char *argv[])
{
#if defined(CONFIG_NET_TCP)
int arg = 1;
int ret;
if (argv[arg]) {
if (!strcmp(argv[arg], "connect")) {
/* tcp connect <ip> port */
char *ip;
u16_t port;
if (tcp_ctx && net_context_is_used(tcp_ctx)) {
printk("Already connected\n");
return 0;
}
if (!argv[++arg]) {
printk("Peer IP address missing.\n");
return 0;
}
ip = argv[arg];
if (!argv[++arg]) {
printk("Peer port missing.\n");
return 0;
}
port = strtol(argv[arg], NULL, 10);
return tcp_connect(ip, port, &tcp_ctx);
}
if (!strcmp(argv[arg], "send")) {
/* tcp send <data> */
struct net_pkt *pkt;
if (!tcp_ctx || !net_context_is_used(tcp_ctx)) {
printk("Not connected\n");
return 0;
}
if (!argv[++arg]) {
printk("No data to send.\n");
return 0;
}
pkt = net_pkt_get_tx(tcp_ctx, TCP_TIMEOUT);
if (!pkt) {
printk("Out of pkts, msg cannot be sent.\n");
return 0;
}
ret = net_pkt_append_all(pkt, strlen(argv[arg]),
(u8_t *)argv[arg],
TCP_TIMEOUT);
if (!ret) {
printk("Cannot build msg (out of pkts)\n");
net_pkt_unref(pkt);
return 0;
}
ret = net_context_send(pkt, tcp_sent_cb, TCP_TIMEOUT,
NULL, NULL);
if (ret < 0) {
printk("Cannot send msg (%d)\n", ret);
net_pkt_unref(pkt);
return 0;
}
return 0;
}
if (!strcmp(argv[arg], "close")) {
/* tcp close */
if (!tcp_ctx || !net_context_is_used(tcp_ctx)) {
printk("Not connected\n");
return 0;
}
ret = net_context_put(tcp_ctx);
if (ret < 0) {
printk("Cannot close the connection (%d)\n",
ret);
return 0;
}
printk("Connection closed.\n");
tcp_ctx = NULL;
return 0;
}
printk("Unknown command '%s'\n", argv[arg]);
goto usage;
} else {
printk("Invalid command.\n");
usage:
printk("Usage:\n");
printk("\ttcp connect <ipaddr> port\n");
printk("\ttcp send <data>\n");
printk("\ttcp close\n");
}
#else
printk("TCP not enabled.\n");
#endif /* CONFIG_NET_TCP */
return 0;
}
static struct shell_cmd net_commands[] = {
/* Keep the commands in alphabetical order */
{ "allocs", net_shell_cmd_allocs,
"\n\tPrint network memory allocations" },
{ "app", net_shell_cmd_app,
"\n\tPrint network application API usage information" },
{ "arp", net_shell_cmd_arp,
"\n\tPrint information about IPv4 ARP cache\n"
"arp flush\n\tRemove all entries from ARP cache" },
{ "conn", net_shell_cmd_conn,
"\n\tPrint information about network connections" },
{ "dns", net_shell_cmd_dns, "\n\tShow how DNS is configure\n"
"dns cancel\n\tCancel all pending requests\n"
"dns <hostname> [A or AAAA]\n\tQuery IPv4 address (default) or "
"IPv6 address for a host name" },
{ "http", net_shell_cmd_http,
"\n\tPrint information about active HTTP connections\n"
"http monitor\n\tStart monitoring HTTP connections\n"
"http\n\tTurn off HTTP connection monitoring" },
{ "iface", net_shell_cmd_iface,
"\n\tPrint information about network interfaces" },
{ "mem", net_shell_cmd_mem,
"\n\tPrint information about network interfaces" },
{ "nbr", net_shell_cmd_nbr, "\n\tPrint neighbor information\n"
"nbr rm <IPv6 address>\n\tRemove neighbor from cache" },
{ "ping", net_shell_cmd_ping, "<host>\n\tPing a network host" },
{ "route", net_shell_cmd_route, "\n\tShow network route" },
{ "rpl", net_shell_cmd_rpl, "\n\tShow RPL mesh routing status" },
{ "stacks", net_shell_cmd_stacks,
"\n\tShow network stacks information" },
{ "stats", net_shell_cmd_stats, "\n\tShow network statistics" },
{ "tcp", net_shell_cmd_tcp, "connect <ip> port\n\tConnect to TCP peer\n"
"tcp send <data>\n\tSend data to peer using TCP\n"
"tcp close\n\tClose TCP connection" },
{ NULL, NULL, NULL }
};
SHELL_REGISTER(NET_SHELL_MODULE, net_commands);