zephyr/kernel/unified/thread.c

450 lines
10 KiB
C

/*
* Copyright (c) 2010-2014 Wind River Systems, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* @brief Kernel thread support
*
* This module provides general purpose thread support.
*/
#include <kernel.h>
#include <toolchain.h>
#include <sections.h>
#include <nano_private.h>
#include <misc/printk.h>
#include <sys_clock.h>
#include <drivers/system_timer.h>
#include <ksched.h>
#include <wait_q.h>
extern struct _static_thread_data _static_thread_data_list_start[];
extern struct _static_thread_data _static_thread_data_list_end[];
#define _FOREACH_STATIC_THREAD(thread_data) \
for (struct _static_thread_data *thread_data = \
_static_thread_data_list_start; \
thread_data < _static_thread_data_list_end; \
thread_data++)
#ifdef CONFIG_FP_SHARING
static inline void _task_group_adjust(struct _static_thread_data *thread_data)
{
/*
* set thread options corresponding to legacy FPU and SSE task groups
* so thread spawns properly; EXE and SYS task groups need no adjustment
*/
if (thread_data->init_groups & K_TASK_GROUP_FPU) {
thread_data->init_options |= K_FP_REGS;
}
#ifdef CONFIG_SSE
if (thread_data->init_groups & K_TASK_GROUP_SSE) {
thread_data->init_options |= K_SSE_REGS;
}
#endif /* CONFIG_SSE */
}
#else
#define _task_group_adjust(thread_data) do { } while (0)
#endif /* CONFIG_FP_SHARING */
/* Legacy API */
int sys_execution_context_type_get(void)
{
if (k_is_in_isr())
return NANO_CTX_ISR;
if (_current->prio < 0)
return NANO_CTX_FIBER;
return NANO_CTX_TASK;
}
int k_is_in_isr(void)
{
return _is_in_isr();
}
/*
* This function tags the current thread as essential to system operation.
* Exceptions raised by this thread will be treated as a fatal system error.
*/
void _thread_essential_set(void)
{
_current->flags |= K_ESSENTIAL;
}
/*
* This function tags the current thread as not essential to system operation.
* Exceptions raised by this thread may be recoverable.
* (This is the default tag for a thread.)
*/
void _thread_essential_clear(void)
{
_current->flags &= ~K_ESSENTIAL;
}
/*
* This routine indicates if the current thread is an essential system thread.
*
* Returns non-zero if current thread is essential, zero if it is not.
*/
int _is_thread_essential(void)
{
return _current->flags & K_ESSENTIAL;
}
void k_busy_wait(uint32_t usec_to_wait)
{
/* use 64-bit math to prevent overflow when multiplying */
uint32_t cycles_to_wait = (uint32_t)(
(uint64_t)usec_to_wait *
(uint64_t)sys_clock_hw_cycles_per_sec /
(uint64_t)USEC_PER_SEC
);
uint32_t start_cycles = k_cycle_get_32();
for (;;) {
uint32_t current_cycles = k_cycle_get_32();
/* this handles the rollover on an unsigned 32-bit value */
if ((current_cycles - start_cycles) >= cycles_to_wait) {
break;
}
}
}
#ifdef CONFIG_THREAD_CUSTOM_DATA
void k_thread_custom_data_set(void *value)
{
_current->custom_data = value;
}
void *k_thread_custom_data_get(void)
{
return _current->custom_data;
}
#endif /* CONFIG_THREAD_CUSTOM_DATA */
#if defined(CONFIG_THREAD_MONITOR)
/*
* Remove a thread from the kernel's list of active threads.
*/
void _thread_monitor_exit(struct k_thread *thread)
{
unsigned int key = irq_lock();
if (thread == _nanokernel.threads) {
_nanokernel.threads = _nanokernel.threads->next_thread;
} else {
struct k_thread *prev_thread;
prev_thread = _nanokernel.threads;
while (thread != prev_thread->next_thread) {
prev_thread = prev_thread->next_thread;
}
prev_thread->next_thread = thread->next_thread;
}
irq_unlock(key);
}
#endif /* CONFIG_THREAD_MONITOR */
/*
* Common thread entry point function (used by all threads)
*
* This routine invokes the actual thread entry point function and passes
* it three arguments. It also handles graceful termination of the thread
* if the entry point function ever returns.
*
* This routine does not return, and is marked as such so the compiler won't
* generate preamble code that is only used by functions that actually return.
*/
FUNC_NORETURN void _thread_entry(void (*entry)(void *, void *, void *),
void *p1, void *p2, void *p3)
{
entry(p1, p2, p3);
if (_is_thread_essential()) {
_NanoFatalErrorHandler(_NANO_ERR_INVALID_TASK_EXIT,
&_default_esf);
}
k_thread_abort(_current);
/*
* Compiler can't tell that k_thread_abort() won't return and issues a
* warning unless we tell it that control never gets this far.
*/
CODE_UNREACHABLE;
}
static void start_thread(struct k_thread *thread)
{
int key = irq_lock(); /* protect kernel queues */
_mark_thread_as_started(thread);
if (_is_thread_ready(thread)) {
_add_thread_to_ready_q(thread);
if (_must_switch_threads()) {
_Swap(key);
return;
}
}
irq_unlock(key);
}
static void schedule_new_thread(struct k_thread *thread, int32_t delay)
{
#ifdef CONFIG_SYS_CLOCK_EXISTS
if (delay == 0) {
start_thread(thread);
} else {
_mark_thread_as_timing(thread);
_add_thread_timeout(thread, NULL,
_TICK_ALIGN + _ms_to_ticks(delay));
}
#else
ARG_UNUSED(delay);
start_thread(thread);
#endif
}
k_tid_t k_thread_spawn(char *stack, unsigned stack_size,
void (*entry)(void *, void *, void*),
void *p1, void *p2, void *p3,
int32_t prio, uint32_t options, int32_t delay)
{
__ASSERT(!_is_in_isr(), "");
struct k_thread *new_thread = (struct k_thread *)stack;
_new_thread(stack, stack_size, NULL, entry, p1, p2, p3, prio, options);
schedule_new_thread(new_thread, delay);
return new_thread;
}
int k_thread_cancel(k_tid_t tid)
{
struct k_thread *thread = tid;
int key = irq_lock();
if (_has_thread_started(thread) || !_is_thread_timing(thread)) {
irq_unlock(key);
return -EINVAL;
}
_abort_thread_timeout(thread);
_thread_monitor_exit(thread);
irq_unlock(key);
return 0;
}
static inline int is_in_any_group(struct _static_thread_data *thread_data,
uint32_t groups)
{
return !!(thread_data->init_groups & groups);
}
void _k_thread_group_op(uint32_t groups, void (*func)(struct k_thread *))
{
unsigned int key;
__ASSERT(!_is_in_isr(), "");
_sched_lock();
/* Invoke func() on each static thread in the specified group set. */
_FOREACH_STATIC_THREAD(thread_data) {
if (is_in_any_group(thread_data, groups)) {
key = irq_lock();
func(thread_data->thread);
irq_unlock(key);
}
}
/*
* If the current thread is still in a ready state, then let the
* "unlock scheduler" code determine if any rescheduling is needed.
*/
if (_is_thread_ready(_current)) {
k_sched_unlock();
return;
}
/* The current thread is no longer in a ready state--reschedule. */
key = irq_lock();
_sched_unlock_no_reschedule();
_Swap(key);
}
void _k_thread_single_start(struct k_thread *thread)
{
_mark_thread_as_started(thread);
if (_is_thread_ready(thread)) {
_add_thread_to_ready_q(thread);
}
}
void _k_thread_single_suspend(struct k_thread *thread)
{
if (_is_thread_ready(thread)) {
_remove_thread_from_ready_q(thread);
}
_mark_thread_as_suspended(thread);
}
void k_thread_suspend(struct k_thread *thread)
{
unsigned int key = irq_lock();
_k_thread_single_suspend(thread);
if (thread == _current) {
_Swap(key);
} else {
irq_unlock(key);
}
}
void _k_thread_single_resume(struct k_thread *thread)
{
_mark_thread_as_not_suspended(thread);
if (_is_thread_ready(thread)) {
_add_thread_to_ready_q(thread);
}
}
void k_thread_resume(struct k_thread *thread)
{
unsigned int key = irq_lock();
_k_thread_single_resume(thread);
_reschedule_threads(key);
}
void _k_thread_single_abort(struct k_thread *thread)
{
if (thread->fn_abort != NULL) {
thread->fn_abort();
}
if (_is_thread_ready(thread)) {
_remove_thread_from_ready_q(thread);
} else {
if (_is_thread_pending(thread)) {
_unpend_thread(thread);
}
if (_is_thread_timing(thread)) {
_abort_thread_timeout(thread);
_mark_thread_as_not_timing(thread);
}
}
_mark_thread_as_dead(thread);
}
void _init_static_threads(void)
{
unsigned int key;
_FOREACH_STATIC_THREAD(thread_data) {
_task_group_adjust(thread_data);
_new_thread(
thread_data->init_stack,
thread_data->init_stack_size,
NULL,
thread_data->init_entry,
thread_data->init_p1,
thread_data->init_p2,
thread_data->init_p3,
thread_data->init_prio,
thread_data->init_options);
thread_data->thread->init_data = thread_data;
}
_sched_lock();
/* Start all (legacy) threads that are part of the EXE task group */
_k_thread_group_op(K_TASK_GROUP_EXE, _k_thread_single_start);
/*
* Non-legacy static threads may be started immediately or after a
* previously specified delay. Even though the scheduler is locked,
* ticks can still be delivered and processed. Lock interrupts so
* that the countdown until execution begins from the same tick.
*
* Note that static threads defined using the legacy API have a
* delay of K_FOREVER.
*/
key = irq_lock();
_FOREACH_STATIC_THREAD(thread_data) {
if (thread_data->init_delay != K_FOREVER) {
schedule_new_thread(thread_data->thread,
thread_data->init_delay);
}
}
irq_unlock(key);
k_sched_unlock();
}
uint32_t _k_thread_group_mask_get(struct k_thread *thread)
{
struct _static_thread_data *thread_data = thread->init_data;
return thread_data->init_groups;
}
void _k_thread_group_join(uint32_t groups, struct k_thread *thread)
{
struct _static_thread_data *thread_data = thread->init_data;
thread_data->init_groups |= groups;
}
void _k_thread_group_leave(uint32_t groups, struct k_thread *thread)
{
struct _static_thread_data *thread_data = thread->init_data;
thread_data->init_groups &= groups;
}
/* legacy API */
void task_start(ktask_t task)
{
int key = irq_lock();
_k_thread_single_start(task);
_reschedule_threads(key);
}