450 lines
10 KiB
C
450 lines
10 KiB
C
/*
|
|
* Copyright (c) 2010-2014 Wind River Systems, Inc.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @brief Kernel thread support
|
|
*
|
|
* This module provides general purpose thread support.
|
|
*/
|
|
|
|
#include <kernel.h>
|
|
|
|
#include <toolchain.h>
|
|
#include <sections.h>
|
|
|
|
#include <nano_private.h>
|
|
#include <misc/printk.h>
|
|
#include <sys_clock.h>
|
|
#include <drivers/system_timer.h>
|
|
#include <ksched.h>
|
|
#include <wait_q.h>
|
|
|
|
extern struct _static_thread_data _static_thread_data_list_start[];
|
|
extern struct _static_thread_data _static_thread_data_list_end[];
|
|
|
|
#define _FOREACH_STATIC_THREAD(thread_data) \
|
|
for (struct _static_thread_data *thread_data = \
|
|
_static_thread_data_list_start; \
|
|
thread_data < _static_thread_data_list_end; \
|
|
thread_data++)
|
|
|
|
#ifdef CONFIG_FP_SHARING
|
|
static inline void _task_group_adjust(struct _static_thread_data *thread_data)
|
|
{
|
|
/*
|
|
* set thread options corresponding to legacy FPU and SSE task groups
|
|
* so thread spawns properly; EXE and SYS task groups need no adjustment
|
|
*/
|
|
if (thread_data->init_groups & K_TASK_GROUP_FPU) {
|
|
thread_data->init_options |= K_FP_REGS;
|
|
}
|
|
#ifdef CONFIG_SSE
|
|
if (thread_data->init_groups & K_TASK_GROUP_SSE) {
|
|
thread_data->init_options |= K_SSE_REGS;
|
|
}
|
|
#endif /* CONFIG_SSE */
|
|
}
|
|
#else
|
|
#define _task_group_adjust(thread_data) do { } while (0)
|
|
#endif /* CONFIG_FP_SHARING */
|
|
|
|
/* Legacy API */
|
|
|
|
int sys_execution_context_type_get(void)
|
|
{
|
|
if (k_is_in_isr())
|
|
return NANO_CTX_ISR;
|
|
|
|
if (_current->prio < 0)
|
|
return NANO_CTX_FIBER;
|
|
|
|
return NANO_CTX_TASK;
|
|
}
|
|
|
|
int k_is_in_isr(void)
|
|
{
|
|
return _is_in_isr();
|
|
}
|
|
|
|
/*
|
|
* This function tags the current thread as essential to system operation.
|
|
* Exceptions raised by this thread will be treated as a fatal system error.
|
|
*/
|
|
void _thread_essential_set(void)
|
|
{
|
|
_current->flags |= K_ESSENTIAL;
|
|
}
|
|
|
|
/*
|
|
* This function tags the current thread as not essential to system operation.
|
|
* Exceptions raised by this thread may be recoverable.
|
|
* (This is the default tag for a thread.)
|
|
*/
|
|
void _thread_essential_clear(void)
|
|
{
|
|
_current->flags &= ~K_ESSENTIAL;
|
|
}
|
|
|
|
/*
|
|
* This routine indicates if the current thread is an essential system thread.
|
|
*
|
|
* Returns non-zero if current thread is essential, zero if it is not.
|
|
*/
|
|
int _is_thread_essential(void)
|
|
{
|
|
return _current->flags & K_ESSENTIAL;
|
|
}
|
|
|
|
void k_busy_wait(uint32_t usec_to_wait)
|
|
{
|
|
/* use 64-bit math to prevent overflow when multiplying */
|
|
uint32_t cycles_to_wait = (uint32_t)(
|
|
(uint64_t)usec_to_wait *
|
|
(uint64_t)sys_clock_hw_cycles_per_sec /
|
|
(uint64_t)USEC_PER_SEC
|
|
);
|
|
uint32_t start_cycles = k_cycle_get_32();
|
|
|
|
for (;;) {
|
|
uint32_t current_cycles = k_cycle_get_32();
|
|
|
|
/* this handles the rollover on an unsigned 32-bit value */
|
|
if ((current_cycles - start_cycles) >= cycles_to_wait) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_THREAD_CUSTOM_DATA
|
|
|
|
void k_thread_custom_data_set(void *value)
|
|
{
|
|
_current->custom_data = value;
|
|
}
|
|
|
|
void *k_thread_custom_data_get(void)
|
|
{
|
|
return _current->custom_data;
|
|
}
|
|
|
|
#endif /* CONFIG_THREAD_CUSTOM_DATA */
|
|
|
|
#if defined(CONFIG_THREAD_MONITOR)
|
|
/*
|
|
* Remove a thread from the kernel's list of active threads.
|
|
*/
|
|
void _thread_monitor_exit(struct k_thread *thread)
|
|
{
|
|
unsigned int key = irq_lock();
|
|
|
|
if (thread == _nanokernel.threads) {
|
|
_nanokernel.threads = _nanokernel.threads->next_thread;
|
|
} else {
|
|
struct k_thread *prev_thread;
|
|
|
|
prev_thread = _nanokernel.threads;
|
|
while (thread != prev_thread->next_thread) {
|
|
prev_thread = prev_thread->next_thread;
|
|
}
|
|
prev_thread->next_thread = thread->next_thread;
|
|
}
|
|
|
|
irq_unlock(key);
|
|
}
|
|
#endif /* CONFIG_THREAD_MONITOR */
|
|
|
|
/*
|
|
* Common thread entry point function (used by all threads)
|
|
*
|
|
* This routine invokes the actual thread entry point function and passes
|
|
* it three arguments. It also handles graceful termination of the thread
|
|
* if the entry point function ever returns.
|
|
*
|
|
* This routine does not return, and is marked as such so the compiler won't
|
|
* generate preamble code that is only used by functions that actually return.
|
|
*/
|
|
FUNC_NORETURN void _thread_entry(void (*entry)(void *, void *, void *),
|
|
void *p1, void *p2, void *p3)
|
|
{
|
|
entry(p1, p2, p3);
|
|
|
|
if (_is_thread_essential()) {
|
|
_NanoFatalErrorHandler(_NANO_ERR_INVALID_TASK_EXIT,
|
|
&_default_esf);
|
|
}
|
|
|
|
k_thread_abort(_current);
|
|
|
|
/*
|
|
* Compiler can't tell that k_thread_abort() won't return and issues a
|
|
* warning unless we tell it that control never gets this far.
|
|
*/
|
|
|
|
CODE_UNREACHABLE;
|
|
}
|
|
|
|
static void start_thread(struct k_thread *thread)
|
|
{
|
|
int key = irq_lock(); /* protect kernel queues */
|
|
|
|
_mark_thread_as_started(thread);
|
|
|
|
if (_is_thread_ready(thread)) {
|
|
_add_thread_to_ready_q(thread);
|
|
if (_must_switch_threads()) {
|
|
_Swap(key);
|
|
return;
|
|
}
|
|
}
|
|
|
|
irq_unlock(key);
|
|
}
|
|
|
|
static void schedule_new_thread(struct k_thread *thread, int32_t delay)
|
|
{
|
|
#ifdef CONFIG_SYS_CLOCK_EXISTS
|
|
if (delay == 0) {
|
|
start_thread(thread);
|
|
} else {
|
|
_mark_thread_as_timing(thread);
|
|
_add_thread_timeout(thread, NULL,
|
|
_TICK_ALIGN + _ms_to_ticks(delay));
|
|
}
|
|
#else
|
|
ARG_UNUSED(delay);
|
|
start_thread(thread);
|
|
#endif
|
|
}
|
|
|
|
k_tid_t k_thread_spawn(char *stack, unsigned stack_size,
|
|
void (*entry)(void *, void *, void*),
|
|
void *p1, void *p2, void *p3,
|
|
int32_t prio, uint32_t options, int32_t delay)
|
|
{
|
|
__ASSERT(!_is_in_isr(), "");
|
|
|
|
struct k_thread *new_thread = (struct k_thread *)stack;
|
|
|
|
_new_thread(stack, stack_size, NULL, entry, p1, p2, p3, prio, options);
|
|
|
|
schedule_new_thread(new_thread, delay);
|
|
|
|
return new_thread;
|
|
}
|
|
|
|
int k_thread_cancel(k_tid_t tid)
|
|
{
|
|
struct k_thread *thread = tid;
|
|
|
|
int key = irq_lock();
|
|
|
|
if (_has_thread_started(thread) || !_is_thread_timing(thread)) {
|
|
irq_unlock(key);
|
|
return -EINVAL;
|
|
}
|
|
|
|
_abort_thread_timeout(thread);
|
|
_thread_monitor_exit(thread);
|
|
|
|
irq_unlock(key);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int is_in_any_group(struct _static_thread_data *thread_data,
|
|
uint32_t groups)
|
|
{
|
|
return !!(thread_data->init_groups & groups);
|
|
}
|
|
|
|
void _k_thread_group_op(uint32_t groups, void (*func)(struct k_thread *))
|
|
{
|
|
unsigned int key;
|
|
|
|
__ASSERT(!_is_in_isr(), "");
|
|
|
|
_sched_lock();
|
|
|
|
/* Invoke func() on each static thread in the specified group set. */
|
|
|
|
_FOREACH_STATIC_THREAD(thread_data) {
|
|
if (is_in_any_group(thread_data, groups)) {
|
|
key = irq_lock();
|
|
func(thread_data->thread);
|
|
irq_unlock(key);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the current thread is still in a ready state, then let the
|
|
* "unlock scheduler" code determine if any rescheduling is needed.
|
|
*/
|
|
if (_is_thread_ready(_current)) {
|
|
k_sched_unlock();
|
|
return;
|
|
}
|
|
|
|
/* The current thread is no longer in a ready state--reschedule. */
|
|
key = irq_lock();
|
|
_sched_unlock_no_reschedule();
|
|
_Swap(key);
|
|
}
|
|
|
|
void _k_thread_single_start(struct k_thread *thread)
|
|
{
|
|
_mark_thread_as_started(thread);
|
|
|
|
if (_is_thread_ready(thread)) {
|
|
_add_thread_to_ready_q(thread);
|
|
}
|
|
}
|
|
|
|
void _k_thread_single_suspend(struct k_thread *thread)
|
|
{
|
|
if (_is_thread_ready(thread)) {
|
|
_remove_thread_from_ready_q(thread);
|
|
}
|
|
|
|
_mark_thread_as_suspended(thread);
|
|
}
|
|
|
|
void k_thread_suspend(struct k_thread *thread)
|
|
{
|
|
unsigned int key = irq_lock();
|
|
|
|
_k_thread_single_suspend(thread);
|
|
|
|
if (thread == _current) {
|
|
_Swap(key);
|
|
} else {
|
|
irq_unlock(key);
|
|
}
|
|
}
|
|
|
|
void _k_thread_single_resume(struct k_thread *thread)
|
|
{
|
|
_mark_thread_as_not_suspended(thread);
|
|
|
|
if (_is_thread_ready(thread)) {
|
|
_add_thread_to_ready_q(thread);
|
|
}
|
|
}
|
|
|
|
void k_thread_resume(struct k_thread *thread)
|
|
{
|
|
unsigned int key = irq_lock();
|
|
|
|
_k_thread_single_resume(thread);
|
|
|
|
_reschedule_threads(key);
|
|
}
|
|
|
|
void _k_thread_single_abort(struct k_thread *thread)
|
|
{
|
|
if (thread->fn_abort != NULL) {
|
|
thread->fn_abort();
|
|
}
|
|
|
|
if (_is_thread_ready(thread)) {
|
|
_remove_thread_from_ready_q(thread);
|
|
} else {
|
|
if (_is_thread_pending(thread)) {
|
|
_unpend_thread(thread);
|
|
}
|
|
if (_is_thread_timing(thread)) {
|
|
_abort_thread_timeout(thread);
|
|
_mark_thread_as_not_timing(thread);
|
|
}
|
|
}
|
|
_mark_thread_as_dead(thread);
|
|
}
|
|
|
|
void _init_static_threads(void)
|
|
{
|
|
unsigned int key;
|
|
|
|
_FOREACH_STATIC_THREAD(thread_data) {
|
|
_task_group_adjust(thread_data);
|
|
_new_thread(
|
|
thread_data->init_stack,
|
|
thread_data->init_stack_size,
|
|
NULL,
|
|
thread_data->init_entry,
|
|
thread_data->init_p1,
|
|
thread_data->init_p2,
|
|
thread_data->init_p3,
|
|
thread_data->init_prio,
|
|
thread_data->init_options);
|
|
|
|
thread_data->thread->init_data = thread_data;
|
|
}
|
|
|
|
_sched_lock();
|
|
/* Start all (legacy) threads that are part of the EXE task group */
|
|
_k_thread_group_op(K_TASK_GROUP_EXE, _k_thread_single_start);
|
|
|
|
/*
|
|
* Non-legacy static threads may be started immediately or after a
|
|
* previously specified delay. Even though the scheduler is locked,
|
|
* ticks can still be delivered and processed. Lock interrupts so
|
|
* that the countdown until execution begins from the same tick.
|
|
*
|
|
* Note that static threads defined using the legacy API have a
|
|
* delay of K_FOREVER.
|
|
*/
|
|
key = irq_lock();
|
|
_FOREACH_STATIC_THREAD(thread_data) {
|
|
if (thread_data->init_delay != K_FOREVER) {
|
|
schedule_new_thread(thread_data->thread,
|
|
thread_data->init_delay);
|
|
}
|
|
}
|
|
irq_unlock(key);
|
|
k_sched_unlock();
|
|
}
|
|
|
|
uint32_t _k_thread_group_mask_get(struct k_thread *thread)
|
|
{
|
|
struct _static_thread_data *thread_data = thread->init_data;
|
|
|
|
return thread_data->init_groups;
|
|
}
|
|
|
|
void _k_thread_group_join(uint32_t groups, struct k_thread *thread)
|
|
{
|
|
struct _static_thread_data *thread_data = thread->init_data;
|
|
|
|
thread_data->init_groups |= groups;
|
|
}
|
|
|
|
void _k_thread_group_leave(uint32_t groups, struct k_thread *thread)
|
|
{
|
|
struct _static_thread_data *thread_data = thread->init_data;
|
|
|
|
thread_data->init_groups &= groups;
|
|
}
|
|
|
|
/* legacy API */
|
|
|
|
void task_start(ktask_t task)
|
|
{
|
|
int key = irq_lock();
|
|
|
|
_k_thread_single_start(task);
|
|
_reschedule_threads(key);
|
|
}
|