406 lines
11 KiB
C
406 lines
11 KiB
C
/*
|
|
* Copyright (c) 2010-2014 Wind River Systems, Inc.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @brief Nanokernel initialization module
|
|
*
|
|
* This module contains routines that are used to initialize the nanokernel.
|
|
*/
|
|
|
|
#include <zephyr.h>
|
|
#include <offsets.h>
|
|
#include <kernel.h>
|
|
#include <misc/printk.h>
|
|
#include <drivers/rand32.h>
|
|
#include <sections.h>
|
|
#include <toolchain.h>
|
|
#include <nano_private.h>
|
|
#include <device.h>
|
|
#include <init.h>
|
|
#include <linker-defs.h>
|
|
#include <ksched.h>
|
|
|
|
/* kernel build timestamp items */
|
|
|
|
#define BUILD_TIMESTAMP "BUILD: " __DATE__ " " __TIME__
|
|
|
|
#ifdef CONFIG_BUILD_TIMESTAMP
|
|
const char * const build_timestamp = BUILD_TIMESTAMP;
|
|
#endif
|
|
|
|
/* boot banner items */
|
|
|
|
#define BOOT_BANNER "BOOTING ZEPHYR OS"
|
|
|
|
#if !defined(CONFIG_BOOT_BANNER)
|
|
#define PRINT_BOOT_BANNER() do { } while (0)
|
|
#elif !defined(CONFIG_BUILD_TIMESTAMP)
|
|
#define PRINT_BOOT_BANNER() printk("***** " BOOT_BANNER " *****\n")
|
|
#else
|
|
#define PRINT_BOOT_BANNER() \
|
|
printk("***** " BOOT_BANNER " - %s *****\n", build_timestamp)
|
|
#endif
|
|
|
|
/* boot time measurement items */
|
|
|
|
#ifdef CONFIG_BOOT_TIME_MEASUREMENT
|
|
uint64_t __noinit __start_tsc; /* timestamp when kernel starts */
|
|
uint64_t __noinit __main_tsc; /* timestamp when main task starts */
|
|
uint64_t __noinit __idle_tsc; /* timestamp when CPU goes idle */
|
|
#endif
|
|
|
|
/* random number generator items */
|
|
#if defined(CONFIG_TEST_RANDOM_GENERATOR) || \
|
|
defined(CONFIG_CUSTOM_RANDOM_GENERATOR)
|
|
#define RAND32_INIT() sys_rand32_init()
|
|
#else
|
|
#define RAND32_INIT()
|
|
#endif
|
|
|
|
/* init/main and idle threads */
|
|
|
|
#define IDLE_STACK_SIZE CONFIG_IDLE_STACK_SIZE
|
|
|
|
#if CONFIG_MAIN_STACK_SIZE & (STACK_ALIGN - 1)
|
|
#error "MAIN_STACK_SIZE must be a multiple of the stack alignment"
|
|
#endif
|
|
|
|
#if IDLE_STACK_SIZE & (STACK_ALIGN - 1)
|
|
#error "IDLE_STACK_SIZE must be a multiple of the stack alignment"
|
|
#endif
|
|
|
|
/* Some projects may specify their main thread and parameters in the
|
|
* MDEF file. In this case, we need to use the stack size specified there
|
|
* and not in Kconfig
|
|
*/
|
|
#if defined(MDEF_MAIN_STACK_SIZE) && \
|
|
(MDEF_MAIN_STACK_SIZE > CONFIG_MAIN_STACK_SIZE)
|
|
#define MAIN_STACK_SIZE MDEF_MAIN_STACK_SIZE
|
|
#else
|
|
#define MAIN_STACK_SIZE CONFIG_MAIN_STACK_SIZE
|
|
#endif
|
|
|
|
static char __noinit __stack main_stack[MAIN_STACK_SIZE];
|
|
static char __noinit __stack idle_stack[IDLE_STACK_SIZE];
|
|
|
|
k_tid_t const _main_thread = (k_tid_t)main_stack;
|
|
k_tid_t const _idle_thread = (k_tid_t)idle_stack;
|
|
|
|
/*
|
|
* storage space for the interrupt stack
|
|
*
|
|
* Note: This area is used as the system stack during nanokernel initialization,
|
|
* since the nanokernel hasn't yet set up its own stack areas. The dual
|
|
* purposing of this area is safe since interrupts are disabled until the
|
|
* nanokernel context switches to the background (or idle) task.
|
|
*/
|
|
#if CONFIG_ISR_STACK_SIZE & (STACK_ALIGN - 1)
|
|
#error "ISR_STACK_SIZE must be a multiple of the stack alignment"
|
|
#endif
|
|
char __noinit __stack _interrupt_stack[CONFIG_ISR_STACK_SIZE];
|
|
|
|
#ifdef CONFIG_SYS_CLOCK_EXISTS
|
|
#include <misc/dlist.h>
|
|
#define initialize_timeouts() do { \
|
|
sys_dlist_init(&_nanokernel.timeout_q); \
|
|
} while ((0))
|
|
#else
|
|
#define initialize_timeouts() do { } while ((0))
|
|
#endif
|
|
|
|
extern void idle(void *unused1, void *unused2, void *unused3);
|
|
|
|
/**
|
|
*
|
|
* @brief Clear BSS
|
|
*
|
|
* This routine clears the BSS region, so all bytes are 0.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
|
|
void _bss_zero(void)
|
|
{
|
|
uint32_t *pos = (uint32_t *)&__bss_start;
|
|
|
|
for ( ; pos < (uint32_t *)&__bss_end; pos++) {
|
|
*pos = 0;
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_XIP
|
|
/**
|
|
*
|
|
* @brief Copy the data section from ROM to RAM
|
|
*
|
|
* This routine copies the data section from ROM to RAM.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
void _data_copy(void)
|
|
{
|
|
uint32_t *pROM, *pRAM;
|
|
|
|
pROM = (uint32_t *)&__data_rom_start;
|
|
pRAM = (uint32_t *)&__data_ram_start;
|
|
|
|
for ( ; pRAM < (uint32_t *)&__data_ram_end; pROM++, pRAM++) {
|
|
*pRAM = *pROM;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
*
|
|
* @brief Mainline for nanokernel's background task
|
|
*
|
|
* This routine completes kernel initialization by invoking the remaining
|
|
* init functions, then invokes application's main() routine.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
static void _main(void *unused1, void *unused2, void *unused3)
|
|
{
|
|
ARG_UNUSED(unused1);
|
|
ARG_UNUSED(unused2);
|
|
ARG_UNUSED(unused3);
|
|
|
|
_sys_device_do_config_level(_SYS_INIT_LEVEL_POST_KERNEL);
|
|
|
|
/* These 3 are deprecated */
|
|
_sys_device_do_config_level(_SYS_INIT_LEVEL_SECONDARY);
|
|
_sys_device_do_config_level(_SYS_INIT_LEVEL_NANOKERNEL);
|
|
_sys_device_do_config_level(_SYS_INIT_LEVEL_MICROKERNEL);
|
|
|
|
/* Final init level before app starts */
|
|
_sys_device_do_config_level(_SYS_INIT_LEVEL_APPLICATION);
|
|
|
|
#ifdef CONFIG_CPLUSPLUS
|
|
/* Process the .ctors and .init_array sections */
|
|
extern void __do_global_ctors_aux(void);
|
|
extern void __do_init_array_aux(void);
|
|
__do_global_ctors_aux();
|
|
__do_init_array_aux();
|
|
#endif
|
|
|
|
_init_static_threads();
|
|
|
|
#ifdef CONFIG_BOOT_TIME_MEASUREMENT
|
|
/* record timestamp for kernel's _main() function */
|
|
extern uint64_t __main_tsc;
|
|
|
|
__main_tsc = _tsc_read();
|
|
#endif
|
|
|
|
extern void main(void);
|
|
|
|
/* If we're going to load the MDEF main() in this context, we need
|
|
* to now set the priority to be what was specified in the MDEF file
|
|
*/
|
|
#if defined(MDEF_MAIN_THREAD_PRIORITY) && \
|
|
(MDEF_MAIN_THREAD_PRIORITY != CONFIG_MAIN_THREAD_PRIORITY)
|
|
k_thread_priority_set(_main_thread, MDEF_MAIN_THREAD_PRIORITY);
|
|
#endif
|
|
main();
|
|
|
|
/* Terminate thread normally since it has no more work to do */
|
|
_main_thread->flags &= ~K_ESSENTIAL;
|
|
}
|
|
|
|
void __weak main(void)
|
|
{
|
|
/* NOP default main() if the application does not provide one. */
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Initializes nanokernel data structures
|
|
*
|
|
* This routine initializes various nanokernel data structures, including
|
|
* the background (or idle) task and any architecture-specific initialization.
|
|
*
|
|
* Note that all fields of "_nanokernel" are set to zero on entry, which may
|
|
* be all the initialization many of them require.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
static void prepare_multithreading(struct k_thread *dummy_thread)
|
|
{
|
|
/*
|
|
* Initialize the current execution thread to permit a level of
|
|
* debugging output if an exception should happen during nanokernel
|
|
* initialization. However, don't waste effort initializing the
|
|
* fields of the dummy thread beyond those needed to identify it as a
|
|
* dummy thread.
|
|
*/
|
|
|
|
_current = dummy_thread;
|
|
|
|
/*
|
|
* Do not insert dummy execution context in the list of fibers, so
|
|
* that it does not get scheduled back in once context-switched out.
|
|
*/
|
|
dummy_thread->flags = K_ESSENTIAL;
|
|
dummy_thread->prio = K_PRIO_COOP(0);
|
|
|
|
/* _nanokernel.ready_q is all zeroes */
|
|
|
|
|
|
/*
|
|
* The interrupt library needs to be initialized early since a series
|
|
* of handlers are installed into the interrupt table to catch
|
|
* spurious interrupts. This must be performed before other nanokernel
|
|
* subsystems install bonafide handlers, or before hardware device
|
|
* drivers are initialized.
|
|
*/
|
|
|
|
_IntLibInit();
|
|
|
|
/* ready the init/main and idle threads */
|
|
|
|
for (int ii = 0; ii < K_NUM_PRIORITIES; ii++) {
|
|
sys_dlist_init(&_nanokernel.ready_q.q[ii]);
|
|
}
|
|
|
|
_new_thread(main_stack, MAIN_STACK_SIZE, NULL,
|
|
_main, NULL, NULL, NULL,
|
|
CONFIG_MAIN_THREAD_PRIORITY, K_ESSENTIAL);
|
|
_mark_thread_as_started(_main_thread);
|
|
_add_thread_to_ready_q(_main_thread);
|
|
|
|
_new_thread(idle_stack, IDLE_STACK_SIZE, NULL,
|
|
idle, NULL, NULL, NULL,
|
|
K_LOWEST_THREAD_PRIO, K_ESSENTIAL);
|
|
_mark_thread_as_started(_idle_thread);
|
|
_add_thread_to_ready_q(_idle_thread);
|
|
|
|
initialize_timeouts();
|
|
|
|
/* perform any architecture-specific initialization */
|
|
|
|
nanoArchInit();
|
|
}
|
|
|
|
static void switch_to_main_thread(void)
|
|
{
|
|
/*
|
|
* Context switch to main task (entry function is _main()): the
|
|
* current fake thread is not on a wait queue or ready queue, so it
|
|
* will never be rescheduled in.
|
|
*/
|
|
|
|
_Swap(irq_lock());
|
|
}
|
|
|
|
#ifdef CONFIG_STACK_CANARIES
|
|
/**
|
|
*
|
|
* @brief Initialize the kernel's stack canary
|
|
*
|
|
* This macro initializes the kernel's stack canary global variable,
|
|
* __stack_chk_guard, with a random value.
|
|
*
|
|
* INTERNAL
|
|
* Depending upon the compiler, modifying __stack_chk_guard directly at runtime
|
|
* may generate a build error. In-line assembly is used as a workaround.
|
|
*/
|
|
|
|
extern void *__stack_chk_guard;
|
|
|
|
#if defined(CONFIG_X86)
|
|
#define _MOVE_INSTR "movl "
|
|
#elif defined(CONFIG_ARM)
|
|
#define _MOVE_INSTR "str "
|
|
#elif defined(CONFIG_ARC)
|
|
#define _MOVE_INSTR "st "
|
|
#else
|
|
#error "Unknown Architecture type"
|
|
#endif /* CONFIG_X86 */
|
|
|
|
#define STACK_CANARY_INIT() \
|
|
do { \
|
|
register void *tmp; \
|
|
tmp = (void *)sys_rand32_get(); \
|
|
__asm__ volatile(_MOVE_INSTR "%1, %0;\n\t" \
|
|
: "=m"(__stack_chk_guard) \
|
|
: "r"(tmp)); \
|
|
} while (0)
|
|
|
|
#else /* !CONFIG_STACK_CANARIES */
|
|
#define STACK_CANARY_INIT()
|
|
#endif /* CONFIG_STACK_CANARIES */
|
|
|
|
/**
|
|
*
|
|
* @brief Initialize nanokernel
|
|
*
|
|
* This routine is invoked when the system is ready to run C code. The
|
|
* processor must be running in 32-bit mode, and the BSS must have been
|
|
* cleared/zeroed.
|
|
*
|
|
* @return Does not return
|
|
*/
|
|
FUNC_NORETURN void _Cstart(void)
|
|
{
|
|
/* floating point operations are NOT performed during nanokernel init */
|
|
|
|
char __stack dummy_thread[__tTCS_NOFLOAT_SIZEOF];
|
|
|
|
/*
|
|
* Initialize nanokernel data structures. This step includes
|
|
* initializing the interrupt subsystem, which must be performed
|
|
* before the hardware initialization phase.
|
|
*/
|
|
|
|
prepare_multithreading((struct k_thread *)&dummy_thread);
|
|
|
|
/* Deprecated */
|
|
_sys_device_do_config_level(_SYS_INIT_LEVEL_PRIMARY);
|
|
|
|
/* perform basic hardware initialization */
|
|
_sys_device_do_config_level(_SYS_INIT_LEVEL_PRE_KERNEL_1);
|
|
_sys_device_do_config_level(_SYS_INIT_LEVEL_PRE_KERNEL_2);
|
|
|
|
/*
|
|
* Initialize random number generator
|
|
* As a platform may implement it in hardware, it has to be
|
|
* initialized after rest of hardware initialization and
|
|
* before stack canaries that use it
|
|
*/
|
|
|
|
RAND32_INIT();
|
|
|
|
/* initialize stack canaries */
|
|
|
|
STACK_CANARY_INIT();
|
|
|
|
/* display boot banner */
|
|
|
|
PRINT_BOOT_BANNER();
|
|
|
|
switch_to_main_thread();
|
|
|
|
/*
|
|
* Compiler can't tell that the above routines won't return and issues
|
|
* a warning unless we explicitly tell it that control never gets this
|
|
* far.
|
|
*/
|
|
|
|
CODE_UNREACHABLE;
|
|
}
|